90 resultados para metal matrix composites

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the mixing parameters on the synthesis of Al–SiCp reinforced metal matrix composites (MMCs) by the stir casting technique is investigated through a water model. The effects of some important mixing parameters such as impeller blade angle, rotating speed, direction of impeller rotation and effect of baffles are investigated and optimized. The results have shown that the axial concentration variation of natural graphite during stirring in the presence of four vertical baffles is 1.0 wt% against in the absence of baffles it is increased to 2.3 wt%. The variations observed in natural graphite concentration in water during mixing are in close agreement with the earlier modeling and limited experimental studies reported on the real molten aluminum–SiC system. Semi-empirical correlations arrived at between the dimensionless numbers for stirred water – natural graphite slurries are Po = Re−0.0545 Fr−1.099 and Po = Re−0.0219 Fr−1.0382 for clockwise and counter clockwise rotation respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticle reinforced metal matrix possess much better mechanical properties over microparticle reinforced metal matrix composites as well as corresponding monolithic matrix materials. However, the fabrication methods of nanoparticle reinforced metal matrix composites are complex and expensive. This paper investigates and discusses the mechanisms of all the fabrication process, such as powder metallurgy, liquid metallurgy, compocasting and hybrid methods, available in the literature. This gives an insight on challenges associated with different processes and ways to improve the fabrication processes. It is found that modified traditional fabrication processes are mainly applied for these materials. The main problem is to achieve reasonably uniform distribution of nanoparticle reinforcement in the methods other than mechanical alloying when the volume or weight percent of reinforcement is higher (> 1%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al/MgAl2O4 in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ~97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of Al2O3, MgAl2O4, and MgO has been widely studied in different Al base metal matrix composites, but the studies on thermodynamic aspects of the Al2O3/ MgAl2O4/MgO phase equilibria have been limited to few systems such as Al/Al2O3 and Al/SiC. The present study analyzes the Al2O3/MgAl2O4 and MgAl2O4/MgO equilibria with respect to the temperature and the Mg content in Al/SiO2 system using an extended Miedema model. There is a linear and parabolic variation in Mg with respect to the temperature for MgAl2O4/MgO and Al2O3/MgAl2O4 equilibria, respectively, and the influence of Si and Cu in the two equilibria is not appreciable. The experimental verification has been limited to MgAl2O4/MgO equilibria due to the high Mg content (≥0.5 wt pct) required for composite processing. The study has been carried out on two varieties of Al/SiO2 composites, i.e., Al/Silica gel and Al/Micro silica processed by liquid metallurgy route (stir casting route). MgO is found to be more stable compared to MgAl2O4 at Mg levels ≥5 and 1 wt pct in Al/Silica gel and Al/Micro silica composites, respectively, at 1073 K. MgO is also found to be more stable at lower Mg content (3 wt pct) in Al/Silica gel composite with decreasing particle size of silica gel from 180 micron to submicron and nanolevels. The MgO to MgAl2O4 transformation has taken place through a series of transition phases influenced by the different thermodynamic and kinetic parameters such as holding temperature, Mg concentration in the alloy, holding time, and silica particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aluminum/MgAl2O4 in situ metal matrix composite has been synthesized using silica gel containing B98% SiO2 in an Al–5Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation have been discussed in detail. A transition phase of composition between MgO and MgAl2O4 has been detected in the SEM-EDS analysis of the particles extracted from the composite by a 25% NaOH solution. This confirms the gradual transformation of MgO to MgAl2O4 by the reaction 3SiO2(s)12MgO(s)14Al(l)-2MgAl2O4(s)13Si(l). The stoichiometry, n, of MgAl2O4 has been found to sustain close to 1 and the crystallite growth of MgAl2O4 has been stopped at DB30 nm in the composites held at 7501C up to 10 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers containing incorporated gold or silver nanoparticles have been synthesized using ionic liquid solutions of gold chloride or silver nitrate. Use of the metal salts as the oxidant for monomers such as pyrrole and terthiophene allows the composites to be formed in one simple step, without the need for templates or capping agents. The incorporated metal nanoparticles are clearly visible by TEM, and the composites have been further analyzed by TGA, CV, UV-Vis, Raman, XPS and scanning TEM coupled with EDS analysis. Utilization of an ionic liquid allows the full oxidizing power of the gold chloride to be accessed, resulting in incorporation of metallic gold into the polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present investigation is on the microstructure evolution and hardness of powder metallurgically processed Al- 0.5 wt.%Mg base 10 wt.% short steel fiber reinforced composites. The 0.38 wt.% C short steel fibers of average diameter 50µm and 500-800µm length were nitrided and chromized in a fluid bed furnace. Nitriding was carried out at 525°C for 90, 30 and 5 min durations. Chromizing was performed at 950°C for 53 and 7 min durations, using thermal reactive deposition (TRD) and diffusion technique. The treated fibers and resulting reaction interfaces were characterized using metallographic, microhardness and XRD techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract We report that a prestressing technique similar to that traditionally used in prestressed concrete can improve the mechanical performance of flax fibre spun yarn reinforced polymer-matrix composites. Prestressing a low twist yarn not only introduces tension to the constituent fibres and compressive stress to the matrix similar as in prestressed concretes, but also causes changes to the yarn structure that lead to the rearrangement of fibres within the yarn. Prestressing increases the fibre packing density in yarn, causes fibre straightening, and reduces fibre obliquity in yarn (improved fibre alignment along yarn axis). All these changes contribute positively to the mechanical properties of the natural fibre yarn reinforced composites. Crown

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recently established means of surface functionalization of unsized carbon fibres for enhanced compatibility with epoxy resins was optimised and evaluated using interfacial shear stress measurements. Interfacial adhesion has a strong influence on the bulk mechanical properties of composite materials. In this work we report on the optimisation of our aryl diazo-grafting methodology via a series of reagent concentration studies. The fibres functionalised at each concentration are characterised physically (tensile strength, modulus, coefficient of friction, and via AFM), and chemically (XPS). The interfacial shear strength (IFSS) of all treated fibres was determined via the single fibre fragmentation test, using the Kelly-Tyson model. Large increases in IFSS for all concentrations (28-47%) relative to control fibres were observed. We show that halving the reagent concentration increased the coefficient of friction of the fibre and the interfacial shear strength of the composite while resulting in no loss of the key performance characteristics in the treated fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the influence of processing temperature and inclusion of micron-sized B4C, TiB2 and ZrSiO4 on the mechanical performance of aluminium matrix composites fabricated through stir casting. The ceramic/aluminium composite could withstand greater external loads, due to interfacial ceramic/aluminium bonding effect on the movement of grain and twin boundaries. Based on experimental results, the tensile strength and hardness of ceramic reinforced composite are significantly increased. The maximum improvement is achieved through adding ZrSiO4 and TiB2, which has led to 52% and 125% increase in tensile strength and hardness, respectively. To predict the effect of incorporating ceramic reinforcements on the mechanical properties of composites, experimental data of mechanical tests are used to create 3 models named Levenberg-Marquardt Algorithm (LMA) neural networks. The results show that the LMA- neural networks models have a high level of accuracy in the prediction of mechanical properties for ceramic reinforced-aluminium matrix composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This research focuses on the improvement of mechanical properties of plant fibre based bio-composites using different yarns structures and prestressing technique. Different types of yarns were used to study the effect of structural parameters and prestressing on different properties of the resulting bio-composites.