154 resultados para metabolic alkalosis

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Sodium bicarbonate (NaHCO3) ingestion has been shown to increase both muscle glycogenolysis and glycolysis during brief submaximal exercise. These changes may be detrimental to performance during more prolonged, exhaustive exercise. This study examined the effect of NaHCO3 ingestion on muscle metabolism and performance during intense endurance exercise of ~60 min in seven endurance-trained men. Methods: Subjects ingested 0.3 g·kg-1 body mass of either NaHCO3 or CaCO3 (CON) 2 h before performing 30 min of cycling exercise at 77 ± 1% [latin capital V with dot above]O2peak followed by completion of 469 ± 21 kJ as quickly as possible (~30 min, ~80% [latin capital V with dot above]O2peak). Results: Immediately before, and throughout exercise, arterialized-venous plasma HCO3- concentrations were higher (P < 0.05) whereas plasma and muscle H+ concentrations were lower (P < 0.05) in NaHCO3 compared with CON. Blood lactate concentrations were higher (P < 0.05) during exercise in NaHCO3, but there was no difference between trials in muscle glycogen utilization or muscle lactate content during exercise. Reductions in PCr and ATP and increases in muscle Cr during exercise were also unaffected by NaHCO3 ingestion. Accordingly, exercise performance time was not different between treatments. Conclusion: NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H+, K+-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H+ (accompanied by Cl) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pretreatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl concentration of the chyme and altered the patterns of other ions, indicating inhibition of H+ and accompanying Clsecretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48h. Arterial blood CO2 pressure and plasma ions were not substantially altered. These results indicate that elevated gastric H+ secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ingestion of agents that modify blood buffering action may affect high-intensity performance. Here we present a meta-analysis of the effects of acute ingestion of three such agents - sodium bicarbonate, sodium citrate and ammonium chloride - on performance and related physiological variables (blood bicarbonate, pH and lactate). A literature search yielded 59 useable studies with 188 observations of performance effects. To perform the mixed- model meta-analysis, all performance effects were converted into a percentage change in mean power and were weighted using standard errors derived from exact p-values, confidence limits (CLs) or estimated errors of measurement. The fixed effects in the meta-analytic model included the number of performance-test bouts (linear), test duration (log linear), blinding (yes/no), competitive status (athiete/nonathlete) and sex (male/female). Dose expressed as buffering mmoL/kg/body mass (BM) was included as a strictly proportional linear effect interacted with all effects except blinding. Probabilistic inferences were derived with reference to thresholds for small and moderate effects on performance of 0.5% and 1.5%, respectively. Publication bias was reduced by excluding study estimates with a standard error >2.7%. The remaining 38 studies and 137 estimates for sodium bicarbonate produced a possibly mod- erate performance enhancement of 1.7% (90% CL ± 2.0%) with a typical dose of 3.5mmoL/kg/BM (-0.3g/kgIBM) in a single 1-minute sprint, following blinded consumption by male athletes. In the 16 studies and 45 estimates for sodium citrate, a typical dose of l.SmmoL/kgIBM (-0.5gIkgJBM) had an unclear effect on performance of 0.0% (±1.3%), while the five studies and six estimates for ammonium chloride produced a possibly moderate impairment of 1.6% (±1.9%) with a typical dose of 5.5mmoL/kgIBM (-0.3glkg/BM). Study and subject characteristics had the following modifying small effects on the enhancement of performance with sodium bicarbonate: an increase of 0.5% (±0.6%) with a 1 mmoL/kg/BM increase in dose; an increase of 0.6% (±0.4%) with five extra sprint bouts; a reduction of 0.6% (±0.9%) for each 10-fold increase in test duration (e.g. 1-10 minutes); reductions of 1.1% (± 1 .1%) with nonathletes and 0.7% (±1.4%) with females. Unexplained variation in effects between research settings was typically ± 1.2%. The only noteworthy effects involving physiological variables were a small correlation between performance and pre-exercise increase in blood bicarbonate with sodium bi- carbonate ingestion, and a very large correlation between the increase in blood bicarbonate and time between sodium citrate ingestion and exercise. The approximate equal and opposite effects of sodium bicarbonate and am- monium chloride are consistent with direct performance effects of pH, but sodium citrate appears to have some additional metabolic inhibitory effect. Important future research includes studies of sodium citrate ingestion several hours before exercise and quantification of gastrointestinal symptoms with sodium bicarbonate and citrate. Although individual responses may vary, we recommend ingestion of 0.3-0.5 glkg/BM sodium bicarbonate to improve mean power by 1.7% (±2.0%) in high-intensity races of short duration. ABSTRACT FROM AUTHOR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium/proton exchangers (NHE) are transmembrane proteins that facilitate the exchange of a Na+ ion for a H+ ion across cellular membranes. The NHE are present in the gills of fishes and are believed to function in acid-base regulation by driving the extrusion of protons across the branchial epithelium in exchange for Na+ in the water. In this study, we have used reverse transcriptase-polymerase chain reaction (RT-PCR) to detect the presence of a branchial NHE in the gills of the Atlantic hagfish, Myxine glutinosa. The subsequent partial cDNA sequence shares homology with other vertebrate and invertebrate NHE isoforms. In addition, using semi-quantitative, multiplex RT-PCR we demonstrate that mRNA expression of hagfish gill NHE is upregulated following an induced metabolic acidosis. Expression was increased to 4.4 times basal levels at 2-h post-infusion and had decreased to 1.6 times basal by 6 h. Expression had returned to basal levels by 24-h post-infusion. The inference from this study is that a gill NHE which is potentially important in acid-base regulation has been present in the vertebrate lineage since before the divergence of the hagfishes from the main vertebrate line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle glycogen is an important fuel for contracting skeletal muscle during prolonged strenuous exercise, and glycogen depletion has been implicated in muscle fatigue. It is also apparent that glycogen availability can exert important effects on a range of metabolic and cellular processes. These processes include carbohydrate, fat and protein metabolism during exercise, post-exercise glycogen resynthesis, excitation–contraction coupling, insulin action and gene transcription. For example, low muscle glycogen is associated with reduced muscle glycogenolysis, increased glucose and NEFA uptake and protein degradation, accelerated glycogen resynthesis, impaired excitation–contraction coupling, enhanced insulin action and potentiation of the exercise-induced increases in transcription of metabolic genes. Future studies should identify the mechanisms underlying, and the functional importance of, the association between glycogen availability and these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematic (relative phase error), metabolic (oxygen consumption, heart rate) and attentional (baseline and cycling reaction times) variables were measured while participants practised a high energy-demanding, intrinsically unstable 90° relative phase coordination pattern on independent bicycle ergometers. The variables were found to be strongly inter-correlated, suggesting a link between emerging performance stability with practice and minimal metabolic and attentional cost. The effects of practice of 90° relative phase coordination on the performance of in-phase (0°-phase) and antiphase (180°-phase) coordination were investigated by measuring the relative phase attractor layouts and recording the metabolic and attentional cost of the three coordination patterns before and after practice. The attentional variables did not differ significantly between coordination patterns and did not change with practice. Before practice, the coordination performance was most accurate and stable for in-phase cycling, with antiphase next and 90°-phase the poorest. However, metabolic cost was lower for antiphase than either in-phase or 90°-phase cycling, and the pre-practice attractor layout deviated from that predicted on the basis of dynamic stability as an attractor state, revealing an attraction to antiphase cycling. After practice of 90°-phase cycling, in-phase cycling remained the most accurate and stable, with 90°-phase next and antiphase the poorest, but antiphase retained the lowest metabolic energy cost. The attractor layout had changed, with new attractors formed at the practised 90°-phase pattern and its symmetrical partner of 270°-phase. Considering both the pre- and post-practice results, attractors were formed at either a low metabolic energy cost but less stable (antiphase) pattern or at a more stable but higher metabolic energy cost (90°-phase) pattern, but in neither case at the most stable and accurate (in-phase) pattern. The results suggest that energetic factors affect coordination dynamics and that coordination modes lower in metabolic energy expenditure may compete with dynamically stable modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many everyday motor tasks have high metabolic energy demands, and some require extended practice to learn the required coordination between limbs. Eight older (73.1 6 4.4 years) and 8 younger (23.3 6 5.9) men practiced a  high-energy two-hand coordination task with both 1808 and 908 target  relative phase. The older group showed greater performance error in both conditions, and performance at 908 was strongly attracted to antiphase coordination (1808). In a retention test one week following the acquisition trials, the older group had learned the 1808 condition but did not learn the 908 condition. Metabolic energy cost was not different between groups, but the older men showed higher heart rate and both conditions imposed  greater cognitive demands as revealed in auditory probe reaction time. Older adults’ motor learning may be inhibited by elevated heart rate at the same  oxygen cost, increased cognitive cost, and an attraction toward more  established low-energy in-phase or antiphase coordination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The BEACON gene was initially identified using the differential display polymerase chain reaction on hypothalamic mRNA samples collected from lean and obese Psammomys obesus, a polygenic animal model of obesity. Hypothalamic BEACON gene expression was positively correlated with percentage of body fat, and intracerebroventricular infusion of the Beacon protein resulted in a dose-dependent increase in food intake and body weight. The human homolog of BEACON, UBL5, is located on chromosome 19p in a region previously linked to quantitative traits related to obesity. Our previous studies showed a statistically significant association between UBL5 sequence variation and several obesity- and diabetes-related quantitative physiological measures in Asian Indian and Micronesian cohorts. Here we undertake a replication study in a Mexican American cohort where the original linkage signal was first detected. We exhaustively resequenced the complete gene plus the putative promoter region for genetic variation in 55 individuals and identified five single nucleotide polymorphisms (SNPs), one of which was novel. These SNPs were genotyped in a Mexican American cohort of 900 individuals from 40 families. Using a quantitative trait linkage disequilibrium test, we found significant associations between UBL5 genetic variants and waist-to-hip ratio (p = 0.027), and the circulating concentrations of insulin (p = 0.018) and total cholesterol (p = 0.023) in fasted individuals. These data are consistent with our earlier published studies and further support a functional role for the UBL5 gene in influencing physiological traits that underpin the development of metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE—To assess change in health-related quality of life (HRQOL) in children with diabetes over 2 years and determine its relationship to change in metabolic control.

RESEARCH DESIGN AND METHODS—In 1998, parents of children aged 5–18 years attending a tertiary diabetes clinic reported their child’s HRQOL using the Child Health Questionnaire PF-50. Those aged 12–18 years also self-reported their HRQOL using the analogous Child Health Questionnaire CF-80. HbA1c levels were recorded. In 2000, identical measures were collected for those who were aged ≤18 years and still attending the clinic.

RESULTS
—Of 117 eligible subjects, 83 (71%) participated. Parents reported no significant difference in children’s HRQOL at baseline and follow-up. However, adolescents reported significant improvements on the Family Activities (P < 0.001), Bodily Pain (P = 0.04), and General Health Perceptions (P = 0.001) scales and worsening on the Behavior (P = 0.04) scale. HbA1c at baseline and follow-up were strongly correlated (r = 0.57). HbA1c increased significantly (mean 7.8% in 1998 vs. 8.5% in 2000; P < 0.001), with lower baseline HbA1c strongly predicting an increase in HbA1c over the 2 years (r2 = 0.25, P < 0.001). Lower parent-reported Physical Summary and adolescent-reported Physical Functioning scores at baseline also predicted increasing HbA1c. Poorer parent-reported Psychosocial Summary scores were related to higher HbA1c at both times but did not predict change in HbA1c.

CONCLUSIONS—Changes in parent and adolescent reports of HRQOL differ. Better physical functioning may protect against deteriorating HbA1c, at least in the medium term. While the HRQOL of children with diabetes does not appear to deteriorate over time, we should not be complacent, as it is consistently poorer than that of their healthy peers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endurance exercise improves insulin sensitivity and increases fat oxidation, which are partly facilitated by the induction of metabolic transcription factors. Next to exercise, increased levels of FFA's also increase the gene expression of transcription factors, hence making it difficult to discern the effects from contractile signals produced during exercise, from those produced by increased circulatory FFA's. We aimed to investigate, in human skeletal muscle, whether acute exercise affects gene expression of metabolic transcriptional co-activators and transcription factors, including PGC-1α, PRC, PPARα, β/δ, and γ and RXR, SREBP-1c and FKHR, and to discern the effect of exercise per se from those of elevated levels of FFA. Two hours of endurance exercise was performed either in the fasted state, or following carbohydrate ingestion prior to and during exercise, thereby blunting the fasting-induced increase in FA availability and oxidation. Of the genes measured, PGC-1α and PRC mRNA increased immediately after, while PPARβ/δ and FKHR mRNA increased 1–4 h after exercise, irrespective of the increases in FFA's. Our results suggest that the induction in vivo of metabolic transcription factors implicated in mitochondrial biogenesis are under the control of inherent signals, (PGC-1α, PRC), while those implicated in substrate selection are under the control of associated signals (PPARβ/δ, FKHR) stimulated from the contracting skeletal muscle that are independent of circulating FFA levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble protein hormones are key regulators of a number of metabolic processes, including food intake and insulin sensitivity. We have used a signal sequence trap to identify genes that encode secreted or membrane-bound proteins in Psammomys obesus, an animal model of obesity and type 2 diabetes (T2D). Using this signal sequence trap, we identified the chemokine chemerin as being a novel adipokine. Gene expression of chemerin and its receptor, chemokine-like receptor 1 (CMKLR1), was significantly higher in adipose tissue of obese and type 2 diabetic P. obesus compared with lean, normoglycemic P. obesus. Fractionation of P. obesus adipose tissue confirmed that chemerin was predominantly expressed in adipocytes, whereas CMKLR1 was expressed in both adipocytes and stromal-vascular cells of adipose tissue. In 3T3-L1 adipocytes, chemerin was markedly induced during differentiation, whereas CMKLR1 was down-regulated during differentiation. Serum chemerin levels were measured by ELISA in human plasma samples from 114 subjects with T2D and 142 normal glucose tolerant controls. Plasma chemerin levels were not significantly different between subjects with T2D and normal controls. However, in normal glucose tolerant subjects, plasma chemerin levels were significantly associated with body mass index, circulating triglycerides, and blood pressure. Here we report, for the first time, that chemerin is an adipokine, and circulating levels of chemerin are associated with several key aspects of metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether preexercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: 14-fold, P < 0.01; RING (really interesting novel gene) finger: 3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To measure the prevalence of overweight, obesity and the metabolic syndrome (MetS) in rural Australia.

DESIGN, SETTING AND PARTICIPANTS: Cross-sectional surveys were conducted in two rural areas in Victoria and South Australia in 2004-2005. A stratified random sample of men and women aged 25-74 years was selected from the electoral roll. Data were collected by a self-administered questionnaire, physical measurements and laboratory tests.

MAIN OUTCOME MEASURES: Prevalence of overweight and obesity, as defined by body mass index (BMI) and waist circumference; prevalence of MetS and its components.

RESULTS: Data on 806 participants (383 men and 423 women) were analysed. Based on BMI, the prevalence of overweight and obesity combined was 74.1% (95% CI, 69.7%-78.5%) in men and 64.1% (95% CI, 59.5%-68.7%) in women. Based on waist circumference, the prevalence of overweight and obesity was higher in women (72.4%; 95% CI, 68.1%-76.7%) than men (61.9%; 95% CI, 57.0%-66.8%). The overall prevalence of obesity was 30.0% (95% CI, 26.8%-33.2%) based on BMI (> or = 30.0 kg/m(2)) and 44.7% (95% CI, 41.2%-48.1%) based on waist circumference (> or = 102 cm [men] and > or= 88 cm [women]). The prevalence of MetS as defined by the US National Cholesterol Education Program Adult Treatment Panel III 2005 criteria was 27.1% (95% CI, 22.7%-31.6%) in men and 28.3% (95% CI, 24.0%-32.6%) in women; based on International Diabetes Federation criteria, prevalences for men and women were 33.7% (95% CI, 29.0%-38.5%) and 30.1% (95% CI, 25.7%-34.5%), respectively. Prevalences of MetS, central (abdominal) obesity, hyperglycaemia, hypertension and hypertriglyceridaemia increased with age.

CONCLUSIONS: In rural Australia, prevalences of MetS, overweight and obesity are very high. Urgent population-wide action is required to tackle the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen female cross-bred (Large White × Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2×2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10·5 and 5·4 % for low- and high-fat diets respectively, P=0·015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of ß-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11·0 and 7·1 % for low- and high-fat diets respectively, P=0·008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0·24 and P=0·30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.