11 resultados para membrane electrode assembly

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalyst support materials exhibit great influence on the performance and durability of proton exchange membrane (PEM) fuel cells. This minireview article summarises recent developments into carbon nanotube-based support materials for PEM fuel cells, including the membrane electrode assembly (MEA). The advantages of using CNTs to promote catalyst performance and stability, a perspective on research directions and strategies to improve fuel cell performance and durability are discussed. It is hoped that this minireview will act as a conduit for future developments in catalyst supports and MEA design for PEM fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe a new electrochemical detection approach towards single protein molecules (microperoxidase-11, MP-11), which are attached to the surface of graphene nanosheets. The non-covalently functionalized graphene nanosheets exhibit enhanced electroactive surface area, where amplified redox current is produced when graphene nanosheets collide with the electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electrodeposition technique for preparing the catalyst layer in polymer electrolyte membrane fuel cells has been designed, which may enable an increase in the level of platinum utilisation currently achieved in these systems. This method consists of a two-step procedure involving the impregnation of platinum ions into a preformed catalyst layer (via an ion-exchange into the Nafion polymer electrolyte), followed by a potentiostatic reduction. The concentration of Nafion within the catalyst layer was found to have a significant bearing on the size of the platinum deposits. The preparation of catalyst layers containing a desired platinum loading should also be possible using this method. Surface areas of the platinum deposits were determined using cyclic voltammetry. The prepared catalyst was compared with a conventional electrode made from E-TEK Pt/C. Scanning electron microscopy was used to investigate the dispersion of the platinum particles. Platinum loadings were determined quantitatively by atomic absorption spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substrate-induced coagulation (SIC) is a coating process based on self-assembly for coating different surfaces with fine particulate materials. The particles are dispersed in a suitable solvent and the stability of the dispersion is adjusted by additives. When a surface, pre-treated with a flocculant e.g. a polyelectrolyte, is dipped into the dispersion, it induces coagulation resulting in the deposition of the particles on the surface. A non-aqueous SIC process for carbon coating is presented, which can be performed in polar, aprotic solvents such as N-Methyl-2- pyrrolidinone (NMP). Polyvinylalcohol (PVA) is used to condition the surface of substrates such as mica, copperfoil, silicon-wafers and lithiumcobalt oxide powder, a cathode material used for Li-ion batteries. The subsequent SIC carbon coating produces uniform layers on the substrates and causes the conductivity of lithiumcobalt oxide to increase drastically, while retaining a high percentage of active battery material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Lipid rafts are currently an intensely investigated topic of cell biology. In addition to a demonstrated role in signal transduction of the host cell, lipid rafts serve as entry and exit sites for microbial pathogens and toxins, such as FimH-expressing enterobacteria, influenza virus, measles virus and cholera toxin. Furthermore, caveolae, a specialised form of lipid raft, are required for the conversion of the non-pathogenic prion protein to the pathogenic scrapie isoform.

Objectives: A number of reports have shown, directly or indirectly, that lipid rafts are important at various stages of the human immunodeficiency virus type-1 (HIV-1) replication cycle. The purpose of this paper is to provide a brief overview of the role of membrane-associated lipid rafts in cell biology, and to evaluate how HIV-1 has hijacked this cellular component to support HIV-1 replication. Special sections are devoted to discussing the role of lipid rafts in (1) the entry of HIV-1, (2) signal transduction regulation in HIV-1-infected cells, (3) the trafficking of HIV-1 proteins via lipid rafts during HIV-1 assembly; and a further section discusses the role of cholesterol in mature HIV-1.

Summary:
Like a number of other pathogens, HIV-1 has evolved to rely on the host cell lipid rafts to support its propagation during multiple stages of the HIV-1 replication cycle. This review has highlighted the importance of lipid rafts in HIV-1 replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regenerated Bombyx mori (B. mori) silk fibroin is a type of widely used biomaterial. The β-sheet structure of it after methanol treatment provides water-insolubility and mechanical stability while on the other side leads to a hydrophobic surface which is less preferred by biological systems. In this work we prepare a novel type of nanoconfined silk fibroin film with a thickness below 100 nm. The film has a flat while hydrophobic surface because of its β-sheet structure due to the z-direction confinement during formation. Different types of lipid monolayers, DOPC, DPPC and MO, are assembled on the silk film surface. The lipid coating, especially the DPPC membrane, provides a much smoother and more hydrophilic surface due to the gel phase tails of the lipids, in comparison with the DOPC and MO ones which are in a liquid phase and have a much stronger interfacial association between silk film surface and lipid tails. Such a lipid coating preserves the biocompatibility and cellular affinity of the silk film which promises potential applications as surface coatings for materials for biological use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tailoring the nanostructures of electrode materials is an effective way to enhance their electrochemical performance for energy storage. Herein, an ice-templating "bricks-and-mortar" assembly approach is reported to make ribbon-like V2O5 nanoparticles and CNTs integrated into a two-dimensional (2D) porous sheet-like V2O5-CNT nanocomposite. The obtained sheet-like V2O5-CNT nanocomposite possesses unique structural characteristics, including a hierarchical porous structure, 2D morphology, large specific surface area and internal conducting networks, which lead to superior electrochemical performances in terms of long-term cyclability and significantly enhanced rate capability when used as a cathode material for LIBs. The sheet-like V2O5-CNT nanocomposite can charge/discharge at high rates of 5C, 10C and 20C, with discharge capacities of approximately 240 mA h g-1, 180 mA h g-1, and 160 mA h g-1, respectively. It also retains 71% of the initial discharge capacity after 300 cycles at a high rate of 5C, with only 0.097% capacity loss per cycle. The rate capability and cycling performance of the sheet-like V2O5-CNT nanocomposite are significantly better than those of commercial V2O5 and most of the reported V2O5 nanocomposite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the influence of chemically reduced graphene oxide sheets (CRGOs) on the electrochemical performance through methyl or carboxylic acid terminated self-assembled monolayers (SAMs) is reported. The gold electrode was initially modified with methyl or carboxylic acid terminated alkanethiols with various carbon chain lengths (n = 4, 6, 8 and 11) and subsequently immobilization of the CRGOs on a SAM surface was achieved via a hydrophobic and electrostatic interaction. By using the potassium ferricyanide as a redox probe, it was observed that CRGOs could effectively enhance the heterogeneous electron transfer (ET) of the SAM due to a tunneling effect. The assemblies based on thiol end groups with methyl head groups were observed to afford more hydrophobic interaction binding with CRGOs with a higher reduction time than the assemblies developed with thiol end groups and a -COOH group which were shown to bind more electrostatically with CRGOs, a lowering reduction time. The Nyquist plots developed show a gradual decrease of the charge transfer resistance (Rct) of [Fe(CN)6]3-/4- redox couple at the CRGOs-SAMs electrode with the controllable adsorption of different CRGO's onto the SAM. Depending on the chain length and terminal functional group the electron transfer rate kinetics were observed to differ considerably.