2 resultados para mechanotransduction

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actin protein is a major component of the cell cytoskeleton, and its ability to respond to external forces and generate propulsive forces through the polymerization of filaments is central to many cellular processes. The mechanisms governing actin's abilities are still not fully understood because of the difficulty in observing these processes at a molecular level. Here, we describe a technique for studying actin–surface interactions by using a surface forces apparatus that is able to directly visualize and quantify the collective forces generated when layers of noninterconnected, end-tethered actin filaments are confined between 2 (mica) surfaces. We also identify a force-response mechanism in which filaments not only stiffen under compression, which increases the bending modulus, but more importantly generates opposing forces that are larger than the compressive force. This elastic stiffening mechanism appears to require the presence of confining surfaces, enabling actin filaments to both sense and respond to compressive forces without additional mediating proteins, providing insight into the potential role compressive forces play in many actin and other motor protein-based phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY: The addition of whole-body vibration to high-load resistive exercise may provide a better stimulus for the reduction of bone loss during prolonged bed rest (spaceflight simulation) than high-load resistive exercise alone. INTRODUCTION: Prior work suggests that the addition of whole-body vibration to high-load resistive exercise (RVE) may be more effective in preventing bone loss in spaceflight and its simulation (bed rest) than resistive exercise alone (RE), though this hypothesis has not been tested in humans. METHODS: Twenty-four male subjects as part of the 2nd Berlin Bed Rest Study performed RVE (n = 7), RE (n = 8) or no exercise (control, n = 9) during 60-day head-down tilt bed rest. Whole-body, spine and total hip dual X-ray absorptiometry (DXA) measurements as well as peripheral quantitative computed tomography measurements of the tibia were conducted during bed rest and up to 90 days afterwards. RESULTS: A better retention of bone mass in RVE than RE was seen at the tibial diaphysis and proximal femur (p ≤ 0.024). Compared to control, RVE retained bone mass at the distal tibia and DXA leg sub-region (p ≤ 0.020), but with no significant difference to RE (p ≥ 0.10). RE impacted significantly (p = 0.038) on DXA leg sub-region bone mass only. Calf muscle size was impacted similarly by both RVE and RE. On lumbar spine DXA, whole-body DXA and calcium excretion measures, few differences between the groups were observed. CONCLUSIONS: Whilst further countermeasure optimisation is required, the results provide evidence that (1) combining whole-body vibration and high-load resistance exercise may be more efficient than high-load resistive exercise alone in preventing bone loss at some skeletal sites during and after prolonged bed rest and (2) the effects of exercise during bed rest impact upon bone recovery up to 3 months afterwards.