6 resultados para maximum ratio combining

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a Geometrically Based Single Bounce Elliptical Model (GBSBEM) for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. The system model assumes a cluster based wireless sensor network (WSN) which collects information from the sensors, filters and modulates the data and transmit it through a wireless channel to be collected at the receiver. We first develop a GBSBE model and based on this model we develop our channel model. Use of Smart antenna system at the receiver end, which exploits various receive diversity combining techniques like Maximal Ratio Combining (MRC), Equal Gain Combining (EGC), and Selection Combining (SC), adds novelty to this system. The performance of these techniques have been proved through matlab simulations and further ahead based on different number of antenna elements present at the receiver array, we calculate the performance of our system in terms of bit-error-rate (BER). Based on the transmission power we quantify for the energy efficiency of our communication model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective The aim of the study was to examine the effects of a high-velocity, low-amplitude (HVLA) manipulation to the lumbosacral joint on corticospinal excitability, as measured by motor evoked potentials (MEPs) using transcranial magnetic stimulation, and spinal reflex excitability, as measured by the Hoffman reflex (H-reflex).

Methods In a randomized, controlled, crossover design, 14 asymptomatic volunteers (mean age, 23 ± 5.4 years; 10 men; 4 women) were measured for MEPs and H-reflexes immediately before and after a randomly allocated intervention. The interventions consisted of HVLA applied bilaterally to the lumbosacral joint and a control intervention. Participants returned a week later, and the same procedures were performed using the other intervention. Data for H-reflex and MEP amplitudes were normalized to the M-wave maximum amplitude and analyzed using 2-way analysis of variance with repeated measures.

Results A significant interaction of treatment by time was found for MEP (F1,13 = 4.87, P = .04), and post hoc analyses showed that the MEP/M-wave maximum ratio decreased significantly in the HVLA treatment (P = .02; effect size, 0.68). For H-reflex, there was a significant effect of time (F1,13 = 8.186, P = .01) and treatment and time interaction (F1,13 = 9.05, P = .01), with post hoc analyses showing that H-reflexes were significantly reduced after the HVLA manipulation (P = .004; effect size, 0.94). There were no significant changes in MEP latency or silent period duration.

Conclusion An HVLA manipulation applied to the lumbosacral joint produced a significant decrease in corticospinal and spinal reflex excitability, and no significant change occurred after the control intervention. The changes in H-reflexes were larger than those in MEPs, suggesting a greater degree of inhibition at the level of the spinal cord.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maximum speed at which magnesium can be extruded is considerably slower than that of many common aluminium extrusion alloys. This affects both the economies of production and the final mechanical behaviour. The present work quantifies the limiting extrusion speeds and ratios of magnesium alloy AZ31 as a function of billet temperature. This is done by combining hot compression test results, FE simulations and extrusion trials. Hot working stress–strain curves displayed a distinct dynamic recrystallisation peak. These data were used as a “look-up” table for the FE simulations in which the cracking limit was assumed to occur when the surface temperature reaches the incipient melting point. The maximum extrusion ratio predicted using FE analysis dropped from 90 to 40 when the extrusion ram speed was raised from 5 to 50 mm/s. The predicted limits agree well with the occurrence of cracking in both a laboratory and a commercial extrusion trial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the ubiquity and evolutionary importance of parasites, their effect on the energy budget of mammals remains surprisingly unclear. The eastern chipmunk (Tamias striatus (L., 1758)) is a burrowing rodent that is commonly infected by cuterebrid bot fly (Cuterebra emasculator Fitch, 1856) larvae. We measured resting metabolic rate (RMR) and cold-induced [Vo.sub.2]-max (under heliox atmosphere) in 20 free-ranging individuals, of which 4 individuals were infected by one or two larva. We found that RMR was significantly higher in chipmunks infected by bot fly larvae (mean [+ or -] SE = 0.88 [+ or -] 0.05 W) than in uninfected individuals (0.74 [+ or -] 0.02 W). In contrast, V[O.sub.2]-max was significantly lower in chipmunks infected by bot fly larvae (4.96 [+ or -] 0.70 W) than in uninfected individuals (6.37 [+ or -] 0.16 W). Consequently, the aerobic scope (ratio of [Vo.sub.2]-max to RMR) was negatively correlated with the number of bot fly larvae (infected individuals = 5.74 [+ or -] 1.03 W; noninfected individuals = 8.67 [+ or -] 0.26 W). Finally, after accounting for the effects of body mass and bot fly parasitism on RMR and [Vo.sub.2]-max, there was no correlation between the two variables among individuals within our population. In addition to providing the first estimate of [Vo.sub.2]-max in T. striatus, these results offer additional evidence that bot fly parasitism has significant impacts on the metabolic ecology of this host species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE

To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph.

METHODS
Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10° ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40° of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant.

RESULTS
The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye.

CONCLUSIONS
A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.