7 resultados para matrix algebra

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a conceptual matrix model with algorithms for biological data processing. The required elements for constructing a matrix model are discussed. The representative matrix-based methods and algorithms which have potentials in biological data processing are presented / proposed. Some application cases of the model in biological data processing are studied, which show the applicability of this model in various kinds of biological data processing. This conceptual model established a framework within which biological data processing and mining could be conducted. The model is also heuristic to other applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we provide a robust version of a linear Kalman filter for target tracking with nonlinear range and bearing measurements. Moreover, we prove that the state estimation error is bounded in a probabilistic sense. We compare our approach with the current state of the art in converted radar measurement based linear filtering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss the problem of texture recognition based on the grey level co-occurrence matrix (GLCM). We performed a number of numerical experiments to establish whether the accuracy of classification is optimal when GLCM entries are aggregated into standard metrics like contrast, dissimilarity, homogeneity, entropy, etc., and compared these metrics to several alternative aggregation methods.We conclude that k nearest neighbors classification based on raw GLCM entries typically works better than classification based on the standard metrics for noiseless data, that metrics based on principal component analysis inprove classification, and that a simple change from the arithmetic to quadratic mean in calculating the standard metrics also improves classification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Given n training examples, the training of a Kernel Fisher Discriminant (KFD) classifier corresponds to solving a linear system of dimension n. In cross-validating KFD, the training examples are split into 2 distinct subsets for a number of times (L) wherein a subset of m examples is used for validation and the other subset of(n - m) examples is used for training the classifier. In this case L linear systems of dimension (n - m) need to be solved. We propose a novel method for cross-validation of KFD in which instead of solving L linear systems of dimension (n - m), we compute the inverse of an n × n matrix and solve L linear systems of dimension 2m, thereby reducing the complexity when L is large and/or m is small. For typical 10-fold and leave-one-out cross-validations, the proposed algorithm is approximately 4 and (4/9n) times respectively as efficient as the naive implementations. Simulations are provided to demonstrate the efficiency of the proposed algorithms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a novel residual generator that uses minimum-order functional observers to trigger actuator and component faults in time-delay systems. We first present a fault detection scheme and derive existence conditions of the residual generator and functional observer. The observer and residual parameters are then systematically determined via solving some coupled generalized Sylvester matrix equations. To deal with the time-delay issue, a stabilizability condition expressed in terms of linear matrix inequality (LMI) is derived to ensure the time-delay observer error system converges to zero with a prescribed convergence rate. Our design approach has the advantage that the designed fault detection scheme has lower order than existing results in the literature. Two numerical examples are given to illustrate the effectiveness of our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constraint satisfaction is a challenging problem in Interval Algebra (IA). So there are many efforts to attack this problem. After building a matrix method to deal with temporal reasoning problems, we develop basic techniques for applying the matrix method to constraint satisfaction in this paper. Thus, the propagating rules and the algorithms of 3- and path-consistency are studied. If our matrix method is used, then the temporal constraint satisfaction problem can be transformed into a problem that can be effectively solved.