16 resultados para materials testing

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis focusses on improving the material behaviour models used in vehicle crash simulations by identifying the mechanical properties most important to crash events, reformulating the material models used in crash simulations, and developing new tests to obtain crash-relevant material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One set of composite laminates was manufactured from bi-directional carbon fibre woven cloth pre-impregnated with epoxy resin and used to establish experimental techniques. Another, similar set was used for extensive data collection. One other set of laminates, manufactured from uni-directional carbon fibre, was also subjected to extensive tests to represent a different material. The results give the pre and post characterizations of repaired composite materials; outlining at each stage the losses and gains of structural strength and stiffness and discusses the difficulties experienced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemical shift in the 129Xe NMR spectrum of adsorbed xenon is very sensitive to the presence of oxygen-containing functional groups on the surface of mesoporous carbon materials. Well-characterized, structurally similar nanodiamond and onion-like carbon samples are considered here as model objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread introduction of multiphase sheet steels in the automotive industry has led to considerable interest in the fatigue properties of these materials. The different microstructural phases within matelials such as TRIP steels can influence the fatigue behaviour due to the manner in which the cyclic strain is accommodated within these phases. In this study fully reversed straincontrolled fatigue tests were perfonnrmed on a commercially-produced uncoated TRIP 780 steel both in the as-received and 20 % prestrained condition. The pre-strained TRIP steel showed significant cyclic softening at higher strain amplitudes, whereas some initial work hardening was observed at lower strain amplitudes before cyclic softening. The cyclic stabilised strength of the pre-strained TRIP steel was independent of strain amplitude, while the cyclic stabilised strength of the as-received TRIP steel increased with strain amplitude. Transmission Electron Microscopy TEM was used to examine the effect of the cyclic deformation on the microstructure of the different conditions, with the differences in fatigue behaviour explained based on the differences in the deformation structure formed within the steel (i.e. dislocation density and sub-structure and microband formation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional approach ie laboratory life testing to examine the reliability of products takes long time and involves tremendous cost as samples are tested till failures. The accelerated life test (ALT) has recently been used as an alternative method. Although ALT reduces the cost of reliability testing through applying more severe environmental conditions than the normal ones, it is no longer sufficient as it does not describe the process of products’ failure explicitly and it is still highly dependent on physical testing. Consequently, novel practices need to be developed for better understanding of the products’ reliability. A novel Finite Element Analysis (FEA) model incorporating mathematical wear equations is developed in the current work and applied to polymer materials. Wear rate, a key parameter, is calculated by using a combinatorial formula that combines a conventional linear equation with a recently published exponential equation. The local wear is firstly calculated and then integrated over the sliding distance. The FEA simulation works in a loop and performs a series of simulation with updated surface geometries. The simulation is in good agreement with the physical testing result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the effect of fibre irregularities on the mechanical behaviour of the irregular fibres using the finite element method (FEM). The first part of this work examines that the effect of fibre dimensional irregularities on the linear and non-linear tensile behaviour of the fibres, using a two-dimensional (2D) finite element models. In the linear simulation, a concept of method Young’s modulus is introduced. The method Young’s modulus, breaking load and breaking extension are affected by the magnitude and frequency of diameter variation in the fibre specimen. Fibre dimensional variation and the gauge length effect are also simulated. In the non-linear analysis, some additional information is obtained on changes in the yield and post-yield regions, which are clearly shown in the load-extension curves. Further investigation is focused on the flexural buckling behaviour of fibres with dimensional irregularities. A three-dimensional (3D) finite element model is used to simulate the buckling deformation of dimensionally irregular fibres, and the critical buckling load of the simulated fibre is calculated. Two parameters, the effective length and the average diameter within the effective length of an irregular fibre, are considered to be the key factors that influence the buckling behaviour of the fibre. An important aspect of this work is the calculation of the effective length of an irregular fibre specimen during buckling. This method has not been reported before. The third part of this work is on the combined tensile and torsional behaviour of fibres with dimensional irregularities, using a three-dimensional (3D) finite element model. Two types of fibres, polyester and wool, are simulated with sine waves of different level (magnitude) and frequency at different twist levels. For the polyester fibre, experiment verification of the simulation results has been carried out, and the results indicate the FE model is well acceptable for the simulation. The final part of this work examines the combined effect of dimensional and structural irregularities on the fibre tensile behaviour. Three-dimensional (3D) finite element models are used to simulate the cracks (transverse, longitudinal, combined transverse and longitudinal cracks) and cavities distributed in uniform fibres and fibres with 30% level of diameter variation, respectively. One of important conclusions is that under the simulated conditions, the dimensional irregularity of fibre influences the tensile behaviour of fibres more than the fibre structural irregularity. The fibre dimensional irregularity affects not only the values of the breaking load and breaking extension, but also the shape of load-extension curves. However, the fibre structural irregularity simulated in the study appears to have little effect on the shape of the load-extension curves. In addition, the effect of crack or cavity size, type and distribution on fibre tensile properties is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

“… university libraries, while differing in the specifics of their goals, generally embrace the obligation to collect, preserve, and make available primary source materials for both current scholarship and future research” (Hewitt 1998).

This paper explores some of the challenges faced by the Fryer Library, the special collections branch of the University of Queensland Library responsible for manuscripts and pictorial materials, as well as theses and rare books. The challenges are not dissimilar to those being met by other cultural agencies or institutions as well as other academic libraries. The challenges covered include collection development, access and preservation, making appropriate responses to the research imperative, as well as promotion of services and collections, and servicing the community at large. The paper outlines the research library context and concludes with experiences of cross-sectoral collaborations and future opportunities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contrubution of this thesis is to generate fundamental research and design information on the impact and bending behaviours of metal foams and foam-filled tubes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow curve behaviour and microstructure evolution of commercially pure titanium (CP-Ti) through uniaxial hot compression was investigated at 850 °C and a strain rate of 0.1/s. Electron back scattered diffraction (EBSD) was employed to characterize the microstructure and crystallographic texture development for different thermomechanical conditions. The stress-strain curves of CP-Ti alloy under hot compression displayed a typical flow behaviour of metals undergoing dynamic recrystallization (DRX), which resulted in grain refinement. The critical strain for the onset of DRX was 0.13 using the double differentiation analysis technique. It was also revealed that the texture was markably altered during hot deformation. © (2014) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiFe1-xMnxPO4/C composite materials as cathode materials in Li-ion batteries have been synthesised and their electrochemical properties have been investigated. The samples were synthesised by using high energy ball milling of commercially available precursors (Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4) and then heated at 600°C. The morphology and structure of the heated samples were analysed by means of SEM and X-ray diffraction. The olivine structure of the LiFe1-xMnxPO4/C composite was obtained. A slight shift of the peaks to smaller 2θ angles with the increasing Mn/Fe ratios is observed due to the increase in lattice parameters. The influence of different Mn/Fe ratios on electrical and electrochemical performances were studied by charge-discharge and cyclic voltammetry (CV) testing. The CV curves of the pure LiFePO4 and LiMnPO4 show the expected Fe2+/Fe3+ peak around 3·5 V and Mn2+/Mn3+ peak around 4·1 V, respectively. The addition of manganese increases the discharge voltage from 3·5 to 4·1 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, metal foams are becoming more and more popular due to their high energy absorption ability and low density, which are being widely used in automotive engineering and aerospace engineering. As a design guide, foams can be characterised by several main geometric parameters, such as pore size, pore shape, spatial distribution and arrangement and so on. Considering most foam materials have random distributions of cell size and cell shape, the digital material representation and modelling of such materials become more complex. Cell size and shape effects on mechanical behaviours of metal foams have been found and investigated numerically and experimentally in authors' previous studies in which the authors have developed a digital framework for the representation, modelling and evaluation of multi-phase materials including metal foams. In this study, 2-/3-D finite element models are both developed to represent metal foams with random cell distributions and then a series of digital testing are simulated to investigate the mechanical behaviours of such foams. For validation and verification purpose, the results obtained from 2-/3-D models have been compared and good agreement has been found which demonstrated the effectiveness of the digital framework developed for metal forms. © (2014) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excursion from safe cathodic protection (CP) potentials occurs on buried steel pipelines due to various forms of electrical interferences such as stray currents. Variations in pH can also occur over some pipeline sections such as seashore and river crossing pipes. Currently, the exact effects of potential excursion and the pH on CP efficiency have not been sufficiently quantified preliminary due to difficulties in measuring these effects. In this work, these effects have been investigated using electrochemical cells designed to mimic the high resistivity and pH conditions observable over underground steel pipes, including a new electrochemical cell that has been designed to facilitate the effective simulation and control of pH, potential excursion and other CP testing parameters. The pH has been shown to be a key factor affecting the patterns of corrosion and CP efficiency. Localised corrosion has been found to be the dominating form of corrosion under potential excursions conditions.