61 resultados para malware

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of malware is a serious threat to computer and information systems throughout the world. Antimalware companies are continually challenged to identify and counter new malware as it is released into the wild. In attempts to speed up this identification and response, many researchers have examined ways to efficiently automate classification of malware as it appears in the environment. In this paper, we present a fast, simple and scalable method of classifying Trojans based only on the lengths of their functions. Our results indicate that function length may play a significant role in classifying malware, and, combined with other features, may result in a fast, inexpensive and scalable method of malware classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anti-malware software producers are continually challenged to identify and counter new malware as it is released into the wild. A dramatic increase in malware production in recent years has rendered the conventional method of manually determining a signature for each new malware sample untenable. This paper presents a scalable, automated approach for detecting and classifying malware by using pattern recognition algorithms and statistical methods at various stages of the malware analysis life cycle. Our framework combines the static features of function length and printable string information extracted from malware samples into a single test which gives classification results better than those achieved by using either feature individually. In our testing we input feature information from close to 1400 unpacked malware samples to a number of different classification algorithms. Using k-fold cross validation on the malware, which includes Trojans and viruses, along with 151 clean files, we achieve an overall classification accuracy of over 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a scalable approach for distinguishing malicious files from clean files by investigating the behavioural features using logs of various API calls. We also propose, as an alternative to the traditional method of manually identifying malware files, an automated classification system using runtime features of malware files. For both projects, we use an automated tool running in a virtual environment to extract API call features from executables and apply pattern recognition algorithms and statistical methods to differentiate between files. Our experimental results, based on a dataset of 1368 malware and 456 cleanware files, provide an accuracy of over 97% in distinguishing malware from cleanware. Our techniques provide a similar accuracy for classifying malware into families. In both cases, our results outperform comparable previously published techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio Frequency Identification (RFID) system is a remote identification technology which is taking the place of barcodes to become electronic tags of an object. However, its radio transmission nature is making it vulnerable in terms of security. Recently, research proposed that an RFID tag can contain malicious code which might spread viruses, worms and other exploits to middleware and back-end systems. This paper is proposing a framework which will provide protection from malware and ensure the data privacy of a tag. The framework will use a sanitization technique with a mutual authentication in the reader level. This will ensure that any malicious code in the tag is identified. If the tag is infected by malicious code it will stop execution of the code in the RFIF system. Here shared unique parameters are used for authentication. It will be capable of protecting an RFID system from denial of service (DOS) attack, forward security and rogue reader better than existing protocols. The framework is introducing a layer concept on a smart reader to reduce coupling between different tasks. Using this framework, the RFID system will be protected from malware and also the privacy of the tag will be ensured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Static detection of polymorphic malware variants plays an important role to improve system security. Control flow has shown to be an effective characteristic that represents polymorphic malware instances. In our research, we propose a similarity search of malware using novel distance metrics of malware signatures. We describe a malware signature by the set of control flow graphs the malware contains. We propose two approaches and use the first to perform pre-filtering. Firstly, we use a distance metric based on the distance between feature vectors. The feature vector is a decomposition of the set of graphs into either fixed size k-sub graphs, or q-gram strings of the high-level source after decompilation. We also propose a more effective but less computationally efficient distance metric based on the minimum matching distance. The minimum matching distance uses the string edit distances between programs' decompiled flow graphs, and the linear sum assignment problem to construct a minimum sum weight matching between two sets of graphs. We implement the distance metrics in a complete malware variant detection system. The evaluation shows that our approach is highly effective in terms of a limited false positive rate and our system detects more malware variants when compared to the detection rates of other algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency identification (RFID) is a remote identification technique promises to revolutionize the way a specific object use to identify in our industry. However, large scale implementation of RFID sought for protection, against Malware threat, information privacy and un-traceability, for low cost RFID tag. In this paper, we propose a framework to provide privacy for tag data and to provide protection for RFID system from malware. In the proposed framework, malware infected tag is detected by analysing individual component of the RFID tag. It uses sanitization technique for analysing individual component. Here authentication based shared unique parameters is used as a method to protect privacy. This authentication protocol will be capable of handling forward and backward security and identifying rogue reader better than existing protocols. Using this framework, the RFID system will be protected from malware and the privacy of the tag will be ensured as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is to develop effective and efficient methodologies which can be applied to continuously improve the performance of detection and classification on malware collected over an extended period of time. The robustness of the proposed methodologies has been tested on malware collected over 2003-2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In statistical classification work, one method of speeding up the process is to use only a small percentage of the total parameter set available. In this paper, we apply this technique both to the classification of malware and the identification of malware from a set combined with cleanware. In order to demonstrate the usefulness of our method, we use the same sets of malware and cleanware as in an earlier paper. Using the statistical technique Information Gain (IG), we reduce the set of features used in the experiment from 7,605 to just over 1,000. The best accuracy obtained in the former paper using 7,605 features is 97.3% for malware versus cleanware detection and 97.4% for malware family classification; on the reduced feature set, we obtain a (best) accuracy of 94.6% on the malware versus cleanware test and 94.5% on the malware classification test. An interesting feature of the new tests presented here is the reduction in false negative rates by a factor of about 1/3 when compared with the results of the earlier paper. In addition, the speed with which our tests run is reduced by a factor of approximately 3/5 from the times posted for the original paper. The small loss in accuracy and improved false negative rate along with significant improvement in speed indicate that feature reduction should be further pursued as a tool to prevent algorithms from becoming intractable due to too much data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary signatures have been widely used to detect malicious software on the current Internet. However, this approach is unable to achieve the accurate identification of polymorphic malware variants, which can be easily generated by the malware authors using code generation engines. Code generation engines randomly produce varying code sequences but perform the same desired malicious functions. Previous research used flow graph and signature tree to identify polymorphic malware families. The key difficulty of previous research is the generation of precisely defined state machine models from polymorphic variants. This paper proposes a novel approach, using Hierarchical Hidden Markov Model (HHMM), to provide accurate inductive inference of the malware family. This model can capture the features of self-similar and hierarchical structure of polymorphic malware family signature sequences. To demonstrate the effectiveness and efficiency of this approach, we evaluate it with real malware samples. Using more than 15,000 real malware, we find our approach can achieve high true positives, low false positives, and low computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero-day or unknown malware are created using code obfuscation techniques that can modify the parent code to produce offspring copies which have the same functionality but with different signatures. Current techniques reported in literature lack the capability of detecting zero-day malware with the required accuracy and efficiency. In this paper, we have proposed and evaluated a novel method of employing several data mining techniques to detect and classify zero-day malware with high levels of accuracy and efficiency based on the frequency of Windows API calls. This paper describes the methodology employed for the collection of large data sets to train the classifiers, and analyses the performance results of the various data mining algorithms adopted for the study using a fully automated tool developed in this research to conduct the various experimental investigations and evaluation. Through the performance results of these algorithms from our experimental analysis, we are able to evaluate and discuss the advantages of one data mining algorithm over the other for accurately detecting zero-day malware successfully. The data mining framework employed in this research learns through analysing the behavior of existing malicious and benign codes in large datasets. We have employed robust classifiers, namely Naïve Bayes (NB) Algorithm, k−Nearest Neighbor (kNN) Algorithm, Sequential Minimal Optimization (SMO) Algorithm with 4 differents kernels (SMO - Normalized PolyKernel, SMO – PolyKernel, SMO – Puk, and SMO- Radial Basis Function (RBF)), Backpropagation Neural Networks Algorithm, and J48 decision tree and have evaluated their performance. Overall, the automated data mining system implemented for this study has achieved high true positive (TP) rate of more than 98.5%, and low false positive (FP) rate of less than 0.025, which has not been achieved in literature so far. This is much higher than the required commercial acceptance level indicating that our novel technique is a major leap forward in detecting zero-day malware. This paper also offers future directions for researchers in exploring different aspects of obfuscations that are affecting the IT world today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphones are mobile phones that offer processing power and features like personal computers (PC) with the aim of improving user productivity as they allow users to access and manipulate data over networks and Internet, through various mobile applications. However, with such anywhere and anytime functionality, new security threats and risks of sensitive and personal data are envisaged to evolve. With the emergence of open mobile platforms that enable mobile users to install applications on their own, it opens up new avenues for propagating malware among various mobile users very quickly. In particular, they become crossover targets of PC malware through the synchronization function between smartphones and computers. Literature lacks detailed analysis of smartphones malware and synchronization vulnerabilities. This paper addresses these gaps in literature, by first identifying the similarities and differences between smartphone malware and PC malware, and then by investigating how hackers exploit synchronization vulnerabilities to launch their attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been argued that an anti-virus strategy based on malware collected at a certain date, will not work at a later date because malware evolves rapidly and an anti-virus engine is faced with a completely new type of executable not as amenable to detection as the first was. In this paper, we test this idea by collecting two sets of malware, the first from 2002 to 2007, the second from 2009 to 2010 to determine how well the anti-virus strategy we developed based on the earlier set [14] will do on the later set. This anti-virus strategy integrates dynamic and static features extracted from the executables to classify malware by distinguishing between families. The resulting classification accuracies are very close for both datasets, with a difference of only 5.4%, the older malware being more accurately classified than the newer malware. This leads us to conjecture that current anti-virus strategies can indeed be modified to deal effectively with new malware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cybercrime has rapidly developed in recent years and malware is one of the major security threats in computer which have been in existence from the very early days. There is a lack of understanding of such malware threats and what mechanisms can be used in implementing security prevention as well as to detect the threat. The main contribution of this paper is a step towards addressing this by investigating the different techniques adopted by obfuscated malware as they are growingly widespread and increasingly sophisticated with zero-day exploits. In particular, by adopting certain effective detection methods our investigations show how cybercriminals make use of file system vulnerabilities to inject hidden malware into the system. The paper also describes the recent trends of Zeus botnets and the importance of anomaly detection to be employed in addressing the new Zeus generation of malware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been argued that an anti-virus strategy based on malware collected at a certain date, will not work at a later date because malware evolves rapidly and an anti-virus engine is then faced with a completely new type of executable not as amenable to detection as the first was.

In this paper, we test this idea by collecting two sets of malware, the first from 2002 to 2007, the second from 2009 to 2010 to determine how well the anti-virus strategy we developed based on the earlier set [18] will do on the later set. This anti-virus strategy integrates dynamic and static features extracted from the executables to classify malware by distinguishing between families. We also perform another test, to investigate the same idea whereby we accumulate all the malware executables in the old and new dataset, separately, and apply a malware versus cleanware classification.

The resulting classification accuracies are very close for both datasets, with a difference of approximately 5.4% for both experiments, the older malware being more accurately classified than the newer malware. This leads us to conjecture that current anti-virus strategies can indeed be modified to deal effectively with new malware.