18 resultados para maleic anhydride

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (Tg) over the entire composition range. There was a sharp increase in the Tg of PS with increasing PP content in the blend and a 12 °C elevation in Tg was observed. The increase in Tg was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high Tg values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the Tg till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the Tg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminum particles (Al) were added to polypropylene (PP) in the presence of poly ethylene glycol (PEG) and polypropylene-graft-maleic anhydride to produce composites. The composites were then melt-spun into a mono filament and tested for tensile properties, diameter evenness and morphology. Melt rheological properties of Al/PP composites were studied in linear viscoelastic response regions. It was observed that level of dispersion of aluminum particles within a polypropylene composite fiber could be improved by incorporating polyethylene glycol. The improvement of dispersion led to an improvement in the fibers mechanical properties through a reduction of the coefficient of variation of fiber diameter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of blending two different materials with a medium density polyethylene for use as pipe coatings is presented. The influence of such blending on properties such as cathodic disbondment (CD) and wet adhesion on steel is investigated. The components blended include a functionalised polyethylene (PE) containing the polar functionality, maleic anhydride (MAH) and an amorphous elastomer, ethylene-propylene-diene terpolymer (EPDM). It was found that modification of PE with small amount (2.5–3 wt%) of either blended MAH-g-PE or EPDM resulted in a significant improvement in CD performance and wet adhesion strength. The mode of failure and disbondment mechanism was investigated using energy dispersive X-ray spectroscopy (EDXS) and X-ray photoelectron spectroscopy (XPS). The greater resistance of migration of sodium ions increases with the incorporation of the modifiers, and it is proposed that this results in an increase in CD performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we discuss the phase morphology, thermal, mechanical, and crystallization properties of uncompatibilized and compatibilized polypropylene/polystyrene (PP/PS) blends. It is observed that the Young's modulus increases, but other mechanical properties such as tensile strength, flexural strength, elongation at break, and impact strength decrease by blending PS to PP. The tensile strength and Young's modulus of PP/PS blends were compared with various theoretical models. The thermal stability, melting, and crystallization temperatures and percentage crystallinity of semicrystalline PP in the blends were marginally decreased by the addition of amorphous PS. The presence of maleic anhydride-grafted polypropylene (compatibilizer) increases the phase stability of 90/10 and 80/20 blends by preventing the coalescence. Hence, finer and more uniform droplets of PS dispersed phases are observed. The compatibilizer induced some improvement in impact strength for the blends with PP matrix phase, however fluctuations in modulus, strength and ductility were observed with respect to the uncompatibilized blend. The thermal stability was not much affected by the addition of the compatibilizer for the PP rich blends but shows some decrease in the thermal stability of the blends, where PS forms the matrix. On the other hand, the % crystallinity was increased by the addition of compatibilizer, irrespective of the blend concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive towards rapid cure thermosetting composites requires a better understanding of the residual stresses that develop during curing. This study investigates the impact of residual stresses on the interlaminar shear strength of resin-infused epoxy/anhydride carbon-fibre laminates. The magnitude of the residual stress was varied by changing the initial injection cure temperature between 75 °C and 145 °C. The corresponding cycle times and the final glass transition temperature of the resin were also measured. The experimentally measured chemical shrinkage and thermal expansion properties of the resin after vitrification were used as inputs to a finite element analysis to calculate the peak residual stresses in the composite. An increase in the initial cure temperature from 85 to 135 °C resulted in an increase of 25% in the residual stress, which led to an experimentally measured reduction in the composite's short beam shear strength of approximately 16% (8 MPa), in good agreement with model prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of isothermal ageing on two high temperature, bismaleimide composite materials, a novel CSIRO CBR 320/328 composite and a commercial CIBA GEIGY Matrimid® 5292 composite, was examined at 204 and 250 °C. Delamination is a major cause of failure in composite materials, therefore, the Mode I interlaminar fracture toughness (GIC) of both materials was measured using the double cantilever beam (DCB) test. Chemical degradation of the matrix was monitored concurrently using Fourier transform infrared (FTIR) and Raman spectroscopy. Chemical changes at the core of both of these materials were found to occur concomitantly with the observed changes in interlaminar fracture toughness. FTIR analysis of both matrix materials revealed the predominant degradation mechanism to be the oxidation of the methylene group bridging two aromatic rings common to the structure of both resins, and was substantiated by the ingrowth of a broad peak centred at 1600 cm−1 . In addition to this, the pyromellitic anhydride unit present only in the CBR 320/328 composites was found to be highly resistant to the effects of ageing, whereas the saturated imide, common to the cured structures of both materials, was observed to degrade. Raman spectroscopy indicated that the predominant degradation mechanism of the composites differed at the two ageing temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matrix metalloproteases (MMPs) and the ADAMs (A Disintegrin And Metalloprotease domain) are proteolytic enzyme families containing a catalytic zinc ion, that are implicated in a variety of normal and pathological processes involving tissue remodeling and cancer. Synthetic MMP inhibitors have been designed for applications in pathological situations. However, a greater understanding of substrate binding and the catalytic mechanism is required so that more effective and selective inhibitors may be developed for both experimental and clinical purposes. By modeling a natural substrate spanning P4-P4‘ in complex with the catalytic domains, we aim to compare substrate-specificities between Stromelysin-1 (MMP-3), ADAM-9 and ADAM–10, with the aid of molecular dynamics simulations. Our results show that the substrate retains a favourable antiparallel beta-sheet conformation on the P-side in addition to the well-known orientation of the P'-region of the scissile bond, and that the primary substrate selectivity is dominated by the sidechains in the S1' pocket and the S2/S3 region. ADAM-9 has a hydrophobic residue as the central determinant in the S1' pocket, while ADAM-10 has an amphiphilic residue, which suggests a different primary specificity. The S2/S3 pocket is largely hydrophobic in all three enzymes. Inspired by our molecular dynamics calculations and supported by a large body of literature, we propose a novel, hypothetical, catalytic mechanism where the Zn-ion polarizes the oxygens from the catalytic glutamate to form a nucleophile, leading to a tetrahedral oxyanion anhydride transition state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient formal synthesis of (±)-hyphodermins A and D, metabolites of Hyphoderma radula, has been completed in 12 and 11 steps, respectively. The tricyclic carbon skeleton of enone 6 was rapidly assembled from diester 11 via an α brominationn−elimination sequence followed by anhydride formation. Regioselective reduction of the lactone group of enone 6 with LiAlH(t-BuO)3 gave lactol 15. Lactol 15 was converted in two steps to (±)-hyphodermin D, without the need for complex protection−deprotection strategies. Lactol 15 was converted in three steps to (±)-hyphodermin A, via the key step of epoxidation of an enone in the presence of a THP lactol. A combination of NMR and ab initio studies suggests that the structures of hyphodermin C and D should be interchanged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient formal synthesis of hyphodermin B 1, a metabolite of Hyphoderma radula, has been completed in 15% overall yield. The tricyclic carbon skeleton 3 was rapidly assembled from a novel vinyl enone via a Diels−Alder reaction, followed by dehydrogenation and anhydride formation. Selective reduction of anhydride 3 with LiAlH(t-BuO)3 gave hyphodermin B 1 in 99% yield. The structure of hyphodermin B 1 was confirmed by X-ray crystallographic analysis. The anhydride 3, bearing a γ-carbonyl group, displayed unexpected reactivity with the anhydride carbonyl closest to the γ-ketone being the most electrophilic site. This was confirmed by HF/6-31G* calculations. In the presence of base, 3 underwent a rearrangement to the novel lactone 16.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four new porous CAU-1 derivatives CAU-1–NH2 ([Al4(OH)2(OCH3)4(BDC–NH2)3]·xH2O, BDC–NH22− = aminoterephthalate), CAU-1–NH2(OH) ([Al4(OH)6(BDC–NH2)3]·xH2O), CAU-1–NHCH3 ([Al4(OH)2(OCH3)4(BDC–NHCH3)3]·xH2O) and CAU-1–NHCOCH3 ([Al4(OH)2(OCH3)4(BDC–NHCOCH3)3]·xH2O) all containing an octameric [Al8(OH)4+y(OCH3)8−y]12+ cluster, with y = 0–8, have been obtained by MW-assisted synthesis and post-synthetic modification. The inorganic as well as the organic unit can be modified. Heteronuclear 1H–15N, 1H–13C and homonuclear 1H–1H connectivities determined by solid-state NMR spectroscopy prove the methylation of the NH2 groups when conventional heating is used. Varying reaction times and temperatures allow controlling the degree of methylation of the amino groups. Short reaction times lead to non-methylated CAU-1 (CAU-1–NH2), while longer reaction times result in CAU-1–NHCH3. CAU-1–NH2 can be modified chemically by using acetic anhydride, and the acetamide derivative CAU-1–NHCOCH3 is obtained. Thermal treatment permits us to change the composition of the Al-containing unit. Methoxy groups are gradually exchanged by hydroxy groups at 190 °C in air. Solid-state NMR spectra unequivocally demonstrate the presence of the amino groups, as well as the successful post-synthetic modification. Furthermore 1H–1H correlation spectra using homonuclear decoupling allow the orientation of the NHCOCH3 groups within the pores to be unravelled. The influence of time and temperature on the synthesis of CAU-1 was studied by X-ray powder diffraction, elemental analyses, and 1H liquid-state NMR and IR spectroscopy.