31 resultados para lymphocyte proliferation

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ganopoly is an aqueous polysaccharide fraction extracted from G. lucidum by patented biochemical technique and has been marketed as an over-the-counter product for chronic diseases including cancer and hepatopathy in many Asian countries. This study was undertaken to explore the anti-tumour effect and the underlying mechanisms of Ganopoly in mice and human tumor cell lines. The maximum tolerateddose (MTD) of Ganopoly in mice was estimated to be 100 mg/kg from a pilot study. Treatment of mice with oral Ganopoly for 10 days significantly reduced the tumour weight of sarcoma-180 in a dose-dependent manner, with inhibition rates of 32.3, 48.2 and 84.9% and growth delays of 1.5, 3.5, and 13.1 days at 20, 50, and 100 mg/kg, respectively. Incubation of Ganopoly at 0.05-1.0 mg/ml for 48 hours showed little or negligible cytotoxicity against human tumor CaSki, SiHa, Hep3B, HepG2, HCT116, HT29, and MCF7 cells in vitro. In contrast, 10 mg/ml of Ganopoly caused significant cytotoxicity in all tumour cells tested except MCF7, with marked apoptotic effects observed in CaSki, HepG2, and HCT116 cells, as indicated by nuclear staining and DNA fragmentation. In addition, Ganopoly enhanced concanavalin A-stimulated proliferation of murine splenocytes by 35.3% at 10 mg/ml, and stimulated the production of nitric oxide in thioglycollate-primed murine peritoneal macrophages in a concentration-dependent manner over 0.05-10 mg/ml. Addition of Ganopoly at 1 mg/ml to murine peritoneal macrophages also potentiated lipopolysaccharide-induced nitric oxide production by 64.2%. Treatment of healthy mice or mice bearing sarsoma-180 with oral Ganopoly over 20-100 mg/kg for 7 day significantly increased the expression of both TNF-α and IFN-γ (at both mRNA and protein levels) in splenocytes in a dose-dependent manner. Moreover, treatment of Ganopoly over 20-100 mg/kg significantly increased cytotoxic T lymphocyte cytotoxicity and NK activity in mice. The overall findings indicated that Ganopoly had antitumor activity with a broad spectrum of immuno-modulating activities and may represent a novel promising immunotherapeutic agent in cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallothioneins (MTs) belong to a family of cysteine-rich, metal-binding intracellular proteins, which have been linked with cell proliferation. In this study, expression levels of the 8 known MT-1 and MT-2 functional isoforms in human invasive ductal breast cancer specimens were determined by RT–PCR. The expression profiles of the MT protein and MT-2A mRNA were further evaluated in 79 cases of human invasive ductal breast carcinoma by immunohistochemistry and in situ hybridization, and correlated with cancer cell proliferation (determined by Ki-67 nuclear antigen immunolabeling). MT-1A, MT-1E, MT-1F, MT-1G, MT-1H, MT-1X and MT-2A but not MT-1B, were detected in breast cancer tissue samples. The MT-2A mRNA transcript was the highest among all the isoforms detected. A positive correlation was observed between MT-2A mRNA and MT protein expression with Ki-67 labeling (P = 0.0003 and P < 0.0001, respectively) but not with apoptosis (P = 0.1244 and P = 0.8189, respectively). Co-localization of the MT protein and Ki-67 nuclear antigen in breast cancer cells was demonstrated by double immunofluorescence staining. There was also significantly higher MT protein and MT-2A mRNA expression in histological grade 3 tumors than in histological grade 1 and 2 tumors. The finding that MT 2A appears to be the main isoform associated with cell proliferation in invasive ductal breast cancer tissues, may have therapeutic implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human telomerase reverse transcriptase (hTERT) underlies cancer cell immortalization, and the expression of hTERT is regulated strictly at the gene transcription. Here, we report that transcription factor Ets2 is required for hTERT gene expression and breast cancer cell proliferation. Silencing Ets2 induces a decrease of hTERT gene expression and increase in human breast cancer cell death. Reconstitution with recombinant hTERT rescues the apoptosis induced by Ets2 depression. In vitro and in vivo analyses show that Ets2 binds to the EtsA and EtsB DNA motifs on the hTERT gene promoter. Mutation of either Ets2 binding site reduces the hTERT promoter transcriptional activity. Moreover, Ets2 forms a complex with c-Myc as demonstrated by co-immunoprecipitation and glutathione S-transferase pulldown assays. Immunological depletion of Ets2, or mutation of the EtsA DNA motif, disables c-Myc binding to the E-box, whereas removal of c-Myc or mutation of the E-box also compromises Ets2 binding to EtsA. Thus, hTERT gene expression is maintained by a mechanism involving Ets2 interactions with the c-Myc transcription factor and the hTERT gene promoter, a protein-DNA complex critical for hTERT gene expression and breast cancer cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle tissue undergoes adaptive changes in response to stress and the genes that control these processes are incompletely characterised. NDRG2 (N-myc downstream-regulated gene 2), a stress- and growth-related gene, was investigated in skeletal muscle growth and adaption. While NDRG2 expression levels were found to be up-regulated in both differentiated human and mouse myotubes compared with undifferentiated myoblasts, the suppression of NDRG2 in C2C12 myoblasts resulted in slowed myoblast proliferation. The increased expression levels of the cell cycle inhibitors, p21 Waf1/Cip1 and p27 Kip1, and of various muscle differentiation markers in NDRG2-deficient myoblasts indicate that a lack of NDRG2 promoted cell cycle exiting and the onset of myogenesis. Furthermore, the analysis of NDRG2 regulation in C2C12 myotubes treated with catabolic and anabolic agents and in skeletal muscle from human subjects following resistance exercise training revealed NDRG2 gene expression to be down-regulated during hypertrophic conditions, and conversely, up-regulated during muscle atrophy. Together, these data demonstrate that NDRG2 expression is highly responsive to different stress conditions in skeletal muscle and suggest that the level of NDRG2 expression may be critical to myoblast growth and differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hev b 6.01 is a major allergen of natural rubber latex with sensitization of 70–86% of latex glove-allergic subjects. Recently, we mapped the immunodominant T cell sites of Hev b 6.01 to the highly IgE-reactive hevein (Hev b 6.02) domain. Hev b 6.01 contains 14 cysteine residues with multiple disulphide bridges stabilizing tertiary conformation. With the goal of a standardized specific immunotherapy we developed hypoallergenic Hev b 6.01 mutants by site-directed mutagenesis of selected cysteine residues (3, 12, 17, and 41) within the Hev b 6.02 domain. Peptides corresponding to the Hev b 6.02 domain of two of the mutants were also synthesized. These mutants and peptide variants showed markedly decreased or ablated latex-allergic patient serum IgE binding by immunoblotting and ELISA. Basophil activation testing confirmed markedly decreased activation with successive cysteine substitutions of the mutants and complete abrogation with the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide. Retention of T cell reactivity is crucial for effective specific immunotherapy and all mutants and peptide variants maintained their latex-specific T cell reactivity. The ablated allergenicity but retained T cell reactivity of the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide suggests this peptide is a suitable candidate for inclusion in a latex immunotherapy preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products.

Results: Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10.

Conclusion: Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for exvivo expansion of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings.