35 resultados para low temperature treatment

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A duplex surface treatment has been developed involving the pre-treatment of hardened and tempered AISI H13 chromium hot-work tool steel by a ferritic nitrocarburising process, and a subsequent treatment of the nitrocarburised surface by a low-temperature chromium thermo-reactive deposition process.  The process formed a thin and hard chromium carbonitride surface layer above a hardened diffusion zone, and the low processing temperature allowed the properties of the core material to be retained. It is expected this surface treatment will find application in the treatment  of tooling used for aluminium forming operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new duplex surface engineering process has been developed that involves the deposition of chromium on ferritic nitrocarburised steel surfaces at low temperatures. This process formed a thin and hard chromium carbonitride surface layer and is to be applied to hardened tooling used in metal forming operations for improved wear performance and die life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO quantum dots were synthesized via a low-temperature solvothermal process without using surfactants. Heat treatment of ZnCl2 and NaOH solutions in tetra-ethylene glycol at 140°C led to the formation of spherical ZnO nanoparticles consisting of the aggregates of uniform-sized quantum dots. The particle size and morphology were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Brunauer–Emmett–Teller gas absorption measurements. It was found that the quantum dots in the particles were single crystals of ZnO of ∼5 nm in diameter having the wurtzite structure. The quantum dots showed quantum size effects even in the agglomerated form. The growth mechanism of this new type of ZnO nanoparticles is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research found changes in the performance (formability) of magnesium alloy sheets with a history of different processes. A key outcome found that the steel sheet metal processing of rolling and heat treatment caused a detrimental effect. The material's internal deformation was found to be linked to the poor formability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work investigates the optimal level of residual hydrogen in partially de-hydrogenated powder to produce CP-Ti plate compacts using ECAP with back pressure which are subsequently rolled at low temperature. A comparative study of the compaction of two TiH2 powders and a CP-Ti powder, with particle sizes 150 um, 50um and 45 um respectively, has been carried out. The hydride powders have also been compacted in a partially de-hydrogenated state. The optimal level of residual hydrogen with respect to the density of the resulting compact and the associated mechanical properties has been defined. ECAP at 300°C produced compacts from these partially de-hydrogenated powders of 99.5% theoretical density, while CP-Ti was compacted to almost full theoretical density under the same ECAP conditions. Therefore, the compaction of powder by ECAP does not benefit from temporary hydrogen alloying.

These compacts then were rolled at temperatures ranging from room temperature to 500°C with an 80% reduction in a single pass. Heat treatment after the rolling can modify the microstructure to improve the resulting mechanical properties and in this regard the temporary alloying with hydrogen has been observed to offer some significant benefits. It is shown the ECAP followed by low temperature rolling is a promising route to the batch production of fully dense CP-Ti wrought product from powder feedstock that avoids the need to subject the material to temperatures greater than 500°C. This low temperature route is expected to be efficient from an energy point of view and it also avoids the danger of interstitial contamination that accompanies most high temperature powder processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenization, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was used to confirm that, despite the presence of 1.5 mass % Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of oxidative stabilization and carbonization processes on the structure, mass and mechanical properties of polyacrylonitrile (PAN) precursor fibers was analyzed. A gradual densification of the fibers occurring from mass loss, decrease in fiber diameter and increase in density were observed after stabilization at a maximum temperature of 255 °C and carbonization at a maximum temperature of 800 °C. The tensile strength and modulus of the fibers were found to decrease after stabilization but then increased after low temperature carbonization. The thermal processing of the precursor fibers affected their mode of failure after tensile loading, changing from a ductile type of failure to a brittle type. The type of failure correlated well with the crystal structure changes in the fibers. Whilst the PAN precursor fiber started to exotherm above 225 °C in air, no prominent exothermic reaction was measured in the carbonized fibers in air up to 430 °C. The aromatization index of stabilized fiber was calculated to be ∼66%, and that of carbonized fiber was ∼99%. FTIR studies indicated that the variation in the chemical structure of the fibers with the stabilization of the fibers. Radial heterogeneity in the stabilized fibers was observed however it was not promoted to the carbonized fibers. Finally, a method to calculate mass retention of PAN precursor fiber after heat treatment was developed, and the calculated percentage mass retained of the precursor fiber after oxidation and carbonization were found to be 81% and 51%, respectively. . This study proposes an effective method to calculate the percentage of mass retained by precursor fibers after stabilization and low temperature carbonization to provide a model for evaluating carbon fiber yield from a given amount of fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Victorian Environment Protection Authority (EPA) has identified Alcoa’s Point Henry aluminium smelter as being a major source of recognized pollutant input due to its disposal of effluent into Corio Bay. Historically, the water quality parameters that have most often exceeded Point Henry’s EPA limits have been pH and suspended solids from the smelter’s discharge points. These waste water discharges also experience high nitrogen and phosphorus concentrations which result in algal blooms that occur at the onset of warm weather. The main hypothesis of this study was that “prevention of algal blooming with the onset of warm weather by removal of nutrients during the cooler months, and continued removal thereafter, is better than curing the problems chemically”. Biofilms have been used to remove nutrients from waste waters, but not under the conditions experienced at Point Henry. The aim of this study, therefore, was to determine if significant biofilm growth would be observed on floating structures suspended in the Point Henry waste water stream during the cooler, winter months of the year. Statistically significant biofilm growth occurred on all suspended structures in all discharge ponds during the winter and early spring of 2000. The use of suspended structures, such as AquaMatTM, as an artificial substrate to attract and support periphyton and bacterial communities (biofilms), which are then able to out-compete phytoplankton communities for available nutrients, is therefore a viable option for the Point Henry smelter. However, further research on the competitive performance of biofilms in the Point Henry ponds during the summer months is required before adequate biofilm management strategies can be developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focusing here on the effects of zinc doping in a nanocrystalline matrix of tin dioxide, inverse opal prototype sensors are presented and extensively studied as superior candidates for gas sensing applications. Courtesy of factors including controlled porosity, enhanced surface to volume ratio and homogeneous dispersion of species in the crystalline lattice assured by the sol–gel technique, prototype sensors were prepared with high dopant ratios in a range of new compositions. Exploiting their high sensitivities to low-gas concentrations at low working temperatures, and thanks to the presented templated sol–gel approach, the prepared sensors open up new frontiers in compositional control over the sensing oxide materials, consequently widening the possibilities available in on-demand gas sensor synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, a novel approach was employed to produce a unique combination of ultrafine ferrite grains and low temperature bainite in a low carbon steel with a high hardenability. The thermomechanical route included warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to bainitic transformation regime (i.e. 400-250°C). The resultant microstructure was ultrafine ferrite grains (i.e. <4μm) and very fine bainite consisting of bainitic ferrite laths with high dislocation density and retained austenite films. This microstructure offers a unique combination of ultimate tensile strength and elongation due to the presence of ductile fine ferrite grains and hard low temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy techniques.