19 resultados para loading rate

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental investigation on mode I delamination of z-pinned double-cantilever-beams (DCB) and associate z-pin bridging mechanisms. Tests were performed with three types of samples: big-pin with an areal density of 2%, small-pin with an areal density of 2% and small-pin with an areal density of 0.5%. The loading rates for each type of samples were set at 1 mm/min and 100 mm/min. Comparison of fracture load under different loading rates shows the rate effects on delamination crack opening and delamination growth. Optical micrographs of z-pins after pullout were also presented to identify the bridging mechanisms of z-pins under different loading rates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. We estimated nitrogen (N) and phosphorus (P) loading into wetlands by carnivorous waterbirds with alternative physiological models using a food-intake and an excreta-production approach. The models were applied for non-breeding and breeding Dutch inland carnivorous waterbird populations to quantify their contribution to nutrient loading on a landscape scale.

2. Model predictions based on food intake exceeded those based on excretion by 59–62% for N and by 2–36% for P, depending on dietary assumptions. Uncertainty analysis indicated that the intake model was most affected by errors in energy requirement, while the excretion model was dependent on faecal nutrient composition.

3. Per capita loading rate of non-breeders increased with body mass from 0.3–0.8 g N day−1 and 0.15 g P day−1 in little gulls Larus minutus to 4.5–11.5 g N day−1 and 2.1–3.2 g P day−1 in great cormorants Phalacrocorax carbo. For breeding birds, the estimated nutrient loading by a family unit over the entire breeding period ranged between 17.6–443.0 g N and 8.6 g P for little tern Sterna albifrons to 619.6–1755.6 g N and 316.2–498.1 g P for great cormorants.

4. We distinguished between external (i.e. importing) and internal (i.e. recycling) nutrient loading by carnivorous waterbirds. For the Netherlands, average external-loading estimates ranged between 38.1–91.5 tonnes N and 16.7–18.2 tonnes P per year, whilst internal-loading estimates ranged between 53.1–140.5 tonnes N and 25.2–39.2 tonnes P and per year. The average contribution of breeding birds was estimated to be 17% and 32% for external and internal loading respectively. Most important species were black-headed gull Larus ridibundus and mew gull Larus canus for external loading, and great cormorant and grey heron Ardea cinerea for internal loading.

5. On a landscape scale, loading by carnivorous waterbirds was of minor importance for freshwater habitats in the Netherlands with 0.26–0.65 kg N ha−1 a−1 and 0.12–0.16 kg P ha−1 a−1. However, on a local scale, breeding colonies may be responsible for significant P loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews our recent studies on z-pinning of composite laminates. The contents include theoretical, numerical and experimental studies on the Mode I and Mode II z-pinned delamination growth and the corresponding bridging laws. Test methods to evaluate the z-pin bridging law will be discussed. Comparisons of experimental results and theoretical predictions for the z-pinned double-cantilever-beam (DCB) subjected to mode I delamination with a pre-determined bridging law are provided to confirm the reliability of the methods. A parametric study by finite element method (FEM) is presented for both Mode I and Mode II z-pinned delaminations. In addition, the effect of loading rate on z-pinned DCB delamination and the bridging effect of z-pinning on the buckling of composite laminates are also given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pentachlorophenol (PCP) is a toxic chemical, often used in the formulation of pesticide, herbicide, anti fungal agent, bactericide and wood preservative. This study is aimed at evaluating the potential of membrane bioreactor (MBR) to treat PCP contaminated wastewater. Synthetic wastewater with COD of 600 mg/L was fed into the MBR at varied PCP loading rate of 12–40 mg/m3/d. A PCP removal rate of 99% and a COD removal rate of 95% were achieved at a hydraulic retention time of 12 hs and a mixed liquor suspended solids (MLSS) concentration of 10,000 mg/L. When sodium pentachlorophenol (NaPCP), which has higher solubility in water, was used in the second phase of the study, at loading rates varying from 20 to 200 mg/m3·d, the removal rate of NaPCP was higher than 99% and the removal rate of COD was more than 96%. It was also found that at higher biomass concentrations, biosorption played an important role besides the biodegradation process. Batch experiments conducted in this study revealed that the sorption capacity to be 0.63 (mg PCP/g biomass) and occurred rapidly within 60 min. This phenomenon could enhance the PCP degradation through increased contact between microorganism and PCP. Further, the membrane resistance was low (trans-membrane pressure of 14 kPa) even after more than 100 ds of operation. In addition, the toxic level of PCP in the influent could have induced the microorganisms to secrete more extra-cellular polymeric substances (EPS) for their protection, which in turn must have increased the viscosity of the mixed liquor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many Asian countries, rapid industrialization and urbanization has led to an increased number of cars, making wastewater from gas stations an important issue of concern in urban environment. This wastewater is characterized by high concentration of oil-water emulsion, which cannot be effectively removed by a conventional gravity separator. An experimental investigation on the treatability of oily wastewater from gas stations using a membrane bioreactor (MBR) system revealed that MBR system could achieve good removal efficiency with stability against shock loading. Optimum operating conditions were found to be at a hydraulic retention time of 4 h and an oil-loading rate of 1.8 kg oil m^sup -3^.d^sup -1^. It was anticipated that adding powdered activated carbon (PAC) in the MBR could help to adsorb the oils. However, operating the MBR with only microbial flocs has an advantage over adding PAC particles into the MBR, since the former condition could provide a prolonged cycle of filtration with a relatively lesser increase in transmembrane pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the present study was to assess the simultaneous removal of physiochemical parameters in moderate strength wastewater using a lab scale horizontal subsurface flow constructed wetland (HFCW) with natural zeolite as a substrate. In this study, high-density polyethylene tanks (0.36 m2) were planted with phragmites australis and scirpus maritimus and received 0.012 m3/d to 0.08 m3/d of synthetic wastewater corresponding to a HLR of 0.035 to 0.243 m/d and a COD loading rate of 0.0148 kg COD (m2.d)-1 to 0.026 kg COD (m2.d)-1. The HFCW was subjected to three hydraulic retention times (HRT) for 4, 3 and 2 days respectively. Averaged data reported coincided with the plant age (4 to 55 weeks) and covered the entire cold season and early part of the hot season. Based on the 55 weeks of operation, the HFCW unit with zeolite achieved significantly higher removal for COD (85 to 88%), TN (54 to 96%), NH4-N (50 to 99%) and TSS (91 to 96%) respectively at all HRT. This system was proved to be tolerant to high organic loadings and nutrients, suggesting these substrates as viable options for biological treatment of wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The treatment efficiency of a wetland system requires a balance between pollutant loading rate and hydraulic retention time (HRT), hydraulic loading rate (HLR) and the suitable substrate to be used. The aim of this study was to investigate the treatment efficiency of horizontal subsurface flow constructed wetland planted with phragmites australis and scirpus maritimus containing three different substrates to treat agricultural wastewater under short term operation. Alum sludge and zeolite were used as substrates and gravel was used as a control for a laboratory-scale horizontal flow constructed wetland (CW) units that were made of high-density Polyethylene. The units were operated under 2, 3 and 4 days of HRTs and at different HLR for each substrate. Each beds received 0.012 m3/d to 0.08 m3/d of synthetic wastewater corresponding to a HLR of 0.035 to 0.243 m/d and a COD loading rate of 0.0148 kg COD (m2.d)-1 to 0.026 kg COD (m2.d)-1. The relationships between the substrate, retention time and removal efficiency, especially of organic matter and nutrient removal were investigated. All units showed relatively stable removal for COD during the entire operational period. The COD removal for all units and HRT were in ranged from 67% to 93%. The zeolite unit achieved significantly higher removal of TN, NH4-N and TSS compared to alum sludge and gravel unit at all HRT. The unit with zeolite was highly effective in removing TN (54 to 96%), NH4-N (50 to 99%) and TSS (91 to 96%) respectively, at 2, 3 and 4 days of HRT. Meanwhile, alum sludge was highly effective in removing phosphate. The removal of phosphate from alum sludge unit was ranged from 94 to 97% for all HRT. Compared to gravel CW unit, zeolite and alum sludge CW were proved to be tolerant to high organic loadings and nutrients, suggesting these substrates as viable options for biological treatment of agricultural wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) and challenged by untreated stormwater collected from the hard-pan and other surfaces of a dairy processing factory in south-west Victoria, Australia. The hydraulic loading rate was tested at two levels, sequentially, 3.75 and 7.5 cm day -1. Some of the monitored variables were removed more efficiently by the planted beds in comparison to unplanted CWs (biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP); p<0.007) but there was no significant difference between the A. donax and P. australis CWs in removal of BOD, suspended solids (SS) and TN (p>0.007) at 3.75 cm day -1 or SS and TN at 7.5 cm day -1. At 3.75 cm day -1, BOD, SS, TN and TP removal in the A. donax and P. australis CWs was 71%, 61%, 78% and 75% and 65%, 60%, 73% and 41%, respectively. Nutrient removal at 7.5 cm day -1 in the A. donax and P. australis beds was 87%, 91%, 84% and 71% and 96%, 94%, 87% and 55%, respectively. As expected, the A. donax CWs produced considerably more biomass (10±1.2 kg wet weight) than the P. australis CWs (2.7±1.2 kg wet weight). This equates to approximately 107 and 36 tonnes ha -1 year -1 biomass (dry weight) for A. donax and P. australis, respectively (assuming 250 days of growing season and singlecut harvest). The performance similarity of the A. donax- and P. australis-planted CWs indicates that either may be used in HSSF wetlands treating dairy factory stormwater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm−1. The hydraulic loading rate was tested at 3.75 cm day−1. In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha−1 year−1 biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by _3 to 40 _C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further _3 to 10 _C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solidstate phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60âsec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new concept of counting time at fatigue processes is proposed, aimed to reach fractographic compatibility in cases of different loading sequences. Values of cycle effectivity are summarized to give the new reference time. The improvement is shown in application - textural fractography of three specimens loaded by constant cycle, constant cycle with periodic overloading, and a random block, respectively. In contrast to the conventional crack growth rate, the reference crack growth rate is related to common morphologic features of all fracture surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combinational loading-unloading rate effects were studied on the behavior of NiTi shape memory alloys (SMAs) under nanoindentation loads. While combinational loading rates showed negligible effects on the performance of NiTi SMAs, the combinational unloading rates did show significant effects on hysteresis energy. The heating-cooling phenomenon during the loading stage and the sole cooling during the unloading stage explain the effects. This study elucidates the nature of thermomechanical SMAs' behaviors during complex compressive loadings with the presence of solid-state phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milled silk particles with volume median particle size (d(0.5)) of 7 μm and 281 nm as well as silk snippets were used for loading of model drugs Orange G, Azophloxine, Rhodamine B, and Crystal Violet. Loading and release of these chemicals depended on the size of silk particles, pH, and the structure and properties of model drugs. Both types of silk particles reached equilibrium loading in less than 10 min due to high surface area whereas silk fibres needed more than 2-3 days to reach equilibrium, depending on the drug type. The uptake rate in fibres could be improved by increasing temperature. Both fibres and particles could slowly release the drugs over many days at 37 °C without a significant initial burst. As particle size decreased, the amount of model drug release also decreased. The release of drugs by the silk fibres was quicker than the silk particles.