10 resultados para liver cell

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aim: The toxic milk (tx) mouse is a non-fatal animal model for the metabolic liver disorder, Wilson's disease. The tx mouse has a mutated gene for a copper-transporting protein, causing early copper accumulation in the liver and late accumulation in other tissues. The present study investigated the efficacy of liver cell transplantation (LCT) to correct the tx mouse phenotype.

Methods: Congenic hepatocytes were isolated and intrasplenically transplanted into 3–4-month-old tx mice, which were then placed on various copper-loaded diets to examine its influence on repopulation by transplanted cells. The control animals were age-matched untransplanted tx mice. Liver repopulation was determined by comparisons of restriction fragment length polymorphism ratios (DNA and mRNA), and copper levels were measured by atomic absorption spectroscopy.

Results: Repopulation in recipient tx mice was detected in 11 of 25 animals (44%) at 4 months after LCT. Dietary copper loading (whether given before or after LCT, or both) provided no growth advantage for donor cells, with similar repopulation incidences in all copper treatment groups. Overall, liver copper levels were significantly lower in repopulated animals (538 ± 68 µg/g, n = 11) compared to non-repopulated animals (866 ± 62 µg/g, n = 14) and untreated controls (910 ± 103 µg/g, n = 6; P < 0.05). This effect was also seen in the kidney and spleen. Brain copper levels remained unchanged.

Conclusion: Transplanted liver cells can proliferate and correct a non-fatal metabolic liver disease, with some restoration of hepatic copper homeostasis after 4 months leading to reduced copper levels in the liver and extrahepatic tissues, but not in the brain.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

At present, all data on Cu uptake and metabolism have been derived from radioactive uptake experiments. These experiments are limited by the availability of the radioactive isotopes 64Cu or 67Cu, and their short half-life (12.5 and 62 h, respectively). In this paper, we investigate an alternative method to study the uptake of Cu with natural isotopes in HepG2 cells, a liver cell line used extensively to study Cu metabolism. In nature, Cu occurs as two stable isotopes, 63Cu and 65Cu (63Cu/65Cu = 2.23). This ratio can be measured accurately using inductively coupled plasma mass spectrometry (ICP-MS). In initial experiments, we attempted to measure the time course of Cu uptake using 65Cu. The change in the 63Cu/65Cu ratio, however, was too small to allow measurement of Cu uptake by the cells. To overcome this difficulty, the natural 63Cu/65Cu ratio in HepG2 cells was altered using long-term incubation with 63Cu. This had a significant effect on Cu concentration in HepG2 cells, changing it from 81.9 ± 9.46 pmol μg DNA−1 (week 1) to 155 ± 8.63 pmol μg DNA−1 (week 2) and stabilising at 171 ± 4.82 pmol μg DNA−1 (week 3). After three weeks of culture with 2 μM 63Cu the 63Cu/65Cu changed from 2.18 ± 0.05 to 15.3 ± 1.01. Cu uptake was then investigated as before using 65Cu. Uptake was linear over 60 min, temperature dependent and consistent with previous kinetics data. These observations suggest that stable isotope ICP-MS provides an alternative technique for the study of Cu uptake by HepG2 cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radioprotective effect of Polyalthia longifolia was studied in mice. P. longifolia treatment showed improvement in mice survival compared to 100% mortality in the irradiated mice. Significant increases in hemoglobin concentration, and red blood cell, white blood cell and platelet counts were observed in the animals pretreated with leaf extract. Pre-irradiation administration of P. longifolia leaf extract also increased the CFU counts of the spleen colony and increased the relative spleen size. A dose-dependent decrease in lipid peroxidation levels was observed in the animals pretreated with P. longifolia. However, although the animals pretreated with P. longifolia exhibited a significant increase in superoxide dismutase and catalase activity, the values remained below normal in both liver and the intestine. Pre-irradiation administration of P. longifolia also resulted in the regeneration of the mucosal crypts and villi of the intestine. Moreover, pretreatment with P. longifolia leaf extract also showed restoration of the normal liver cell structure and a significant reduction in the elevated levels of ALT, AST and bilirubin. These results suggested the radioprotective ability of P. longifolia leaf extract, which is significant for future investigation for human applications in developing efficient, economically viable, non-toxic natural and clinically acceptable novel radioprotectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent evidence suggests that a subset of hepatocellular carcinomas (HCCs) are derived from liver cancer stem cells (LCSCs). In order to isolate and characterize LCSCs, reliable markers that are specific to these cells are required. We evaluated the efficacy of a range of cancer stem cell (CSC) markers in isolating and characterizing LCSCs. We show that the most widely used CSC markers are not specific to LCSCs. By western analysis, protein expression of the common markers showed no significant difference between HCC tumor tissues and adjacent non-cancerous liver. Further, isolation of LCSCs from common HCC cell lines using FACScan and microbeads showed no consistent marker expression pattern. We also show that LCSCs have unique subtypes. Immunohistochemistry of HCC tissues showed that different HCCs express unique combinations of LCSC markers. Quantitative real-time polymerase chain reaction analysis showed that LCSCs isolated using different markers in the same HCC phenotype had different expression profiles. Likewise, LCSCs isolated from different HCC phenotypes with the same marker also had unique expression profiles and displayed varying resistance profiles to Sorafenib. Thus, using a range of commonly used CSC markers in HCCs and cell lines, we demonstrate that currently available markers are not specific for LCSCs. LCSCs have unique subtypes that express distinctive combinations of LCSC markers and altered drug resistance profiles, making their identification problematic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Intervention of the biliary system is frequently done in patients with obstructive jaundice and is associated with significant morbidity and mortality. The pathogenesis is unknown.
Materials and methods
A rat model of bile duct ligation (BDL) for 2 weeks was established in which biliary intervention was feasible by injection of normal saline through an indwelling catheter in the bile ducts. Plasma levels of C-C chemokine MCP-1 and C-X-C chemokine MIP-2 were measured by using ELISA. Blood monocytes, Kupffer cells, and neutrophils in the liver were characterized with antibodies to ED1, ED2, and myeloperoxidase (MPO). Lipid peroxidation was measured by malondialdehyde contents and apoptosis by TUNEL stain of the liver.
Results
Biliary intervention resulted in an increase of plasma MCP-1 and MIP-2 proteins by 1 h, which declined to normal level by 3 h in both sham and BDL rats. The levels in BDL rats were significantly higher than in sham at most points. There was a transient increase of ED1- and ED2-positive cells and MPO-staining cells in sham rat liver by 1 h after intervention. ED2-positive cells increased significantly by 1 h, while ED1- and MPO-positive cells decreased, yet insignificantly after intervention in BDL rats. The cell counts in BDL were constantly higher than in sham. Malondialdehyde increased precipitously in BDL by 3 h and was significantly higher than in sham throughout the study period. Parenchymal liver injury, manifested by elevated ALT, as well as apoptosis and necrosis of liver cells, was significantly increased in BDL rats, but not in sham rats.
Conclusion
Biliary intervention augments chemokine expression, precipitates lipid peroxidation, and aggravates liver injury in cholestatic rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suppressor of cytokine signaling 1 (SOCS1) has been shown to play important roles in the immune system. It acts as a key negative regulator of signaling via receptors for IFNs and other cytokines controlling T cell development, as well as Toll receptor signaling in macrophages and other immune cells. To gain further insight into SOCS1, we have identified and characterized the zebrafish socs1 gene, which exhibited sequence and functional conservation with its mammalian counterparts. Initially maternally derived, the socs1 gene showed early zygotic expression in mesodermal structures, including the posterior intermediate cell mass, a site of primitive hematopoiesis. At later time points, expression was seen in a broad anterior domain, liver, notochord, and intersegmental vesicles. Morpholino-mediated knockdown of socs1 resulted in perturbation of specific hematopoietic populations prior to the commencement of lymphopoiesis, ruling out T cell involvement. However, socs1 knockdown also lead to a reduction in the size of the developing thymus later in embryogenesis. Zebrafish SOCS1 was shown to be able to interact with both zebrafish Jak2a and Stat5.1 in vitro and in vivo. These studies demonstrate a conserved role for SOCS1 in T cell development and suggest a novel T cell-independent function in embryonic myelopoiesis mediated, at least in part, via its effects on receptors using the Jak2-Stat5 pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Caveolin-1 (CAV1) is a structural protein of caveolae involved in lipid homeostasis and endocytosis. Using newly generated pure Balb/C CAV1 null (Balb/CCAV1−/−) mice, CAV1−/− mice from Jackson Laboratories (JAXCAV1−/−), and CAV1−/− mice developed in the Kurzchalia Laboratory (KCAV1−/−), we show that under physiological conditions CAV1 expression in mouse tissues is necessary to guarantee an efficient progression of liver regeneration and mouse survival after partial hepatectomy. Absence of CAV1 in mouse tissues is compensated by the development of a carbohydrate-dependent anabolic adaptation. These results were supported by extracellular flux analysis of cellular glycolytic metabolism in CAV1-knockdown AML12 hepatocytes, suggesting cell autonomous effects of CAV1 loss in hepatic glycolysis. Unlike in KCAV1−/− livers, in JAXCAV1−/− livers CAV1 deficiency is compensated by activation of anabolic metabolism (pentose phosphate pathway and lipogenesis) allowing liver regeneration. Administration of 2-deoxy-glucose in JAXCAV1−/− mice indicated that liver regeneration in JAXCAV1−/− mice is strictly dependent on hepatic carbohydrate metabolism. Moreover, with the exception of regenerating JAXCAV1−/− livers, expression of CAV1 in mice is required for efficient hepatic lipid storage during fasting, liver regeneration, and diet-induced steatosis in the three CAV1−/− mouse strains. Furthermore, under these conditions CAV1 accumulates in the lipid droplet fraction in wildtype mouse hepatocytes. Conclusion: Our data demonstrate that lack of CAV1 alters hepatocyte energy metabolism homeostasis under physiological and pathological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigallocatechin-3-gallate (EGCG) is a constituent of green tea and has been associated with anticancer activity. In the present study, the inhibitory effect of EGCG on human hepatocellular cancer cells was examined by cell viability assay, in vitro apoptosis assay and cell cycle analysis. In addition, gene expression was measured to elucidate the molecular mechanisms of action of EGCG by mitochondrial membrane potential (MMP) determination and western blot analysis. We demonstrated that EGCG induced apoptosis, decreased mitochondrial membrane potential and promoted G0/G1 phase cell cycle arrest of HCCLM6 cells but not that of non-cancerous liver cells (HL-7702). The EGCG-induced apoptosis of HCCLM6 cells was associated with a significant decrease in Bcl-2 and NF-κB expression. In addition, the expression of Bax, p53, caspase-9 and caspase-3 increased, and cytochrome c was released. These results suggest that EGCG inhibits the progression of cancer through cytocidal activity and that it is a potential therapeutic compound for hepatocellular carcinoma (HCC).