107 resultados para leg muscle

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an effort to compare the disturbances in leg muscle pH during sprint running, muscle biopsies were obtained from the gastrocnemius and vastus lateralis muscles of six healthy men (three endurance-trained and three nonendurance-trained) before and after a treadmill sprint run (TSR) to fatigue (54-105 s) at roughly 125% of their aerobic capacities. Following the TSR, repeated blood samples were taken from a hand vein and later analyzed for pH, PCO2, and lactic acid (HLa). The muscle specimens were analyzed in duplicate for pH and HLa. Resting-muscle pH was 7.03 +/- 0.02 (means +/- SE) and 7.04 +/- 0.01 for the gastrocnemius and vastus lateralis muscles, respectively. At the termination of the TSR, the pH in these muscles was 6.88 +/- 0.05 and 6.86 +/- 0.03, respectively. After a 400-m timed run on the track, the pH in the gastrocnemius of four of the subjects averaged 6.63 +/- 0.03, while blood pH and HLa were 7.10 +/- 0.03 and 12.3 mM, respectively. Although no differences in pH and HLa were observed between the vastus lateralis and gastrocnemius muscles at the end of the treadmill trial, it is speculated that the lesser disturbance in acid-base balance seen in endurance performers may have been due to a lesser production of metabolites in their running musculature when compared to nonendurance performers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine whether items on a falls risk-assessment tool, made up of brief cognitive and physical measures that nurses use in practice, differentiated fallers and nonfallers in oncology and medical settings. A measure of leg muscle strength clearly distinguished between fallers and nonfallers, with the latter having stronger leg muscles. For nursing practice, the assessment of patients' muscle strength seems to be the most useful scale for identifying potential fallers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5–6 weeks later. Birds treated with single T implants achieved breeding levels (4–6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal's BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5. 5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated whether the use of superimposed whole-body vibration (WBV) during cross-education strength training would optimise strength transfer compared to conventional cross-education strength training. Twenty-one healthy, dominant right leg volunteers (21±3 years) were allocated to a strength training (ST, m = 3, f = 4), a strength training with WBV (ST + V, m = 3, f = 4), or a control group (no training, m = 3, f = 4). Training groups performed 9 sessions over 3 weeks, involving unilateral squats for the right leg, with or without WBV (35 Hz; 2.5mm amplitude). All groups underwent dynamic single leg maximum strength testing (1RM) and single and paired pulse transcranial magnetic stimulation (TMS) prior to and following training. Strength increased in the trained limb for the ST (41%; ES = 1.14) and ST + V (55%; ES = 1.03) groups, which resulted in a 35% (ES = 0.99) strength transfer to the untrained left leg for the ST group and a 52% (ES = 0.97) strength transfer to the untrained leg for the ST + V group, when compared to the control group. No differences in strength transfer between training groups were observed (P = 0.15). For the untrained leg, no differences in the peak height of recruitment curves or SICI were observed between ST and ST + V groups (P = 1.00). Strength training with WBV does not appear to modulate the cross-transfer of strength to a greater magnitude when compared to conventional cross-education strength training.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED: Individuals who are involved in explosive sport types, such as 100-m sprints and long jump, have greater bone density, leg muscle size, jumping height and grip strength than individuals involved in long-distance running. INTRODUCTION: The purpose of this study is to examine the relationship between different types of physical activity with bone, lean mass and neuromuscular performance in older individuals. METHODS: We examined short- (n = 50), middle- (n = 19) and long-distance (n = 109) athletes at the 15th European Masters Championships in Poznań, Poland. Dual X-ray absorptiometry was used to measure areal bone mineral density (aBMD) and lean tissue mass. Maximal countermovement jump, multiple one-leg hopping and maximal grip force tests were performed. RESULTS: Short-distance athletes showed significantly higher aBMD at the legs, hip, lumbar spine and trunk compared to long-distance athletes (p ≤ 0.0012). Countermovement jump performance, hop force, grip force, leg lean mass and arm lean mass were greater in short-distance athletes (p ≤ 0.027). A similar pattern was seen in middle-distance athletes who typically showed higher aBMD and better neuromuscular performance than long-distance athletes, but lower in magnitude than short-distance athletes. In all athletes, aBMD was the same or higher than the expected age-adjusted population mean at the lumbar spine, hip and whole body. This effect was greater in the short- and middle-distance athletes. CONCLUSIONS: The stepwise relation between short-, middle- and long-distance athletes on bone suggests that the higher-impact loading protocols in short-distance disciplines are more effective in promoting aBMD. The regional effect on bone, with the differences between the groups being most marked at load-bearing regions (legs, hip, spine and trunk) rather than non-load-bearing regions, is further evidence in support of the idea that bone adaptation to exercise is dependent upon the local loading environment, rather than as part of a systemic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Overuse injury to the patellar tendon (patellar tendinopathy) is a major reason for interrupted training and competition for elite athletes. In both sexes, the prevalence of unilateral and bilateral tendinopathy has been shown to differ. It has been proposed that bilateral pathology may have a different aetiology from unilateral pathology. Investigation of risk factors that may be unique to unilateral and bilateral patellar tendinopathy in female athletes may reveal insights into the aetiology of this condition.
Objectives: To examine whether anthropometry, body composition, or muscle strength distinguished elite female basketball players with unilateral or bilateral patellar tendinopathy.
Methods: Body composition, anthropometry, and muscle strength were compared in elite female basketball players with unilateral (n = 8), bilateral (n = 7), or no (n = 24) patellar tendinopathy. Body composition was analysed using a dual energy x ray absorptiometer. Anthropometric measures were assessed using standard techniques. Knee extensor strength was measured at 180°/s using an isokinetic dynamometer. z scores were calculated for the unilateral and bilateral groups (using the no tendinopathy group as controls). z scores were tested against zero.
Results: The tibia length to stature ratio was approximately 1.3 (1.3) SDs above zero in both the affected and non-affected legs in the unilateral group (p<0.05). The waist to hip ratio was 0.66 (0.78) SD above zero in the unilateral group (p<0.05). In the unilateral group, leg lean to total lean ratio was 0.42 (0.55) SD above zero (p<0.07), the trunk lean to total lean ratio was 0.63 (0.68) SD below zero (p<0.05), and leg fat relative to total fat was 0.47 (0.65) SD below zero (p<0.09). In the unilateral group, the leg with pathology was 0.78 (1.03) SD weaker during eccentric contractions (p<0.07).
Conclusions: Unilateral patellar tendinopathy has identifiable risk factors whereas bilateral patellar tendinopathy may not. This suggests that the aetiology of these conditions may be different. However, interpretation must respect the limitation of small subject numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine whether preexercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: 14-fold, P < 0.01; RING (really interesting novel gene) finger: 3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) has recently emerged as a key signaling protein in skeletal muscle, coordinating the activation of both glucose and fatty acid metabolism in response to increased cellular energy demand. To determine whether AMPK signaling may also regulate gene transcription in muscle, rats were given a single subcutaneous injection (1 mg/g) of the AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR). AICAR injection activated (P < 0.05) AMPK-α2 (~2.5-fold) and transcription of the uncoupling protein-3 (UCP3, ~4-fold) and hexokinase II (HKII, ~10-fold) genes in both red and white skeletal muscle. However, AICAR injection also elicited (P < 0.05) an acute drop (60%) in blood glucose and a sustained (2-h) increase in blood lactate, prompting concern regarding the specificity of AICAR on transcription. To maximize AMPK activation in muscle while minimizing potential systemic counterregulatory responses, a single-leg arterial infusion technique was employed in fully conscious rats. Relative to saline-infused controls, single-leg arterial infusion of AICAR (0.125, 0.5, and 2.5 µg · g-1 · min-1 for 60 min) induced a dose-dependent increase (2- to 4-fold, P < 0.05) in UCP3 and HKII transcription in both red and white skeletal muscle. Importantly, AICAR infusion activated transcription only in muscle from the infused leg and had no effect on blood glucose or lactate levels. These data provide evidence that AMPK signaling is linked to the transcriptional regulation of select metabolic genes in skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (~75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on ß-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ß2-microglobulin (ß2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ~65% of O2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined ß2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). ß-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, ß2M was not altered at any time point postexercise. We conclude that ß2M and ß-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas ß2M and GAPDH are the most stably expressed following END exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During gait termination at normal walking speed, older adults more frequently employ two-step responses, increasing their stopping distance and stopping time more than younger controls. This study investigated ageing effects on lower limb muscle recruitment patterns during stopping at three walking speeds. Twelve young male (26±3.7 years, range 19–30) and 12 gender-matched older participants (72±4.3 years, range 65–82) terminated walking at normal, medium and maximum speed. A visual stopping stimulus was presented 10 ms following either left or right heel-contact with no stimulus (catch) on 30% of trials. Electromyographic (EMG) activity was recorded from the tibialis anterior (TA), soleus (SOL), biceps femoris (BF), vastus lateralis (VL) and gluteus medius (GM). Older males more frequently (46% of trials) took two-steps to stop than young males (20%). The stance leg muscles responded significantly faster than the swing leg, and with increased speed, fewer swing limb muscles contributed to stopping. Older males were slower to respond with the stance leg, at 215 ms following the stimulus compared with 176 ms for the younger group. They also recruited fewer swing leg muscles with less frequent activation of the soleus and gluteus medius. Failure to activate muscles would provide less extensor torque to maintain the centre of gravity anterior to the forward base of support. This would decrease the total force opposing horizontal velocity in order to bring the body to rest and, as a consequence, encourage an additional step prior to stopping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 x 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor- coactivator-1 (ET 8.5-fold, ST 10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET 26-fold, ST 39-fold), vascular endothelial growth factor (VEGF; ET 4.5-fold, ST 4-fold), and muscle atrophy F-box protein (MAFbx) (ET 2-fold, ST 0.4-fold) mRNA increased in both groups, whereas MyoD (3-fold), myogenin (0.9-fold), and myostatin (2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (7-fold, P < 0.01) and MyoD (0.7-fold) increased, whereas MAFbx (0.7-fold) and myostatin (0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats.

RESEARCH DESIGN AND METHODS: Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 µmol/l) or saline was infused into the epigastric artery of the contracting leg.

RESULTS: Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by ~35%, without affecting AMP-activated protein kinase (AMPK) activation.

CONCLUSIONS: NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.