2 resultados para lattice parameter

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In-situ neutron diffraction was employed to monitor the evolution of nano-bainitic ferrite during low temperature isothermal heat treatment of austenite. The first 10 peaks (austenite, γ and ferrite, α) were monitored during austenization, homogenization, rapid cooling and isothermal holding at 573 K. Changes in the α-110 and γ-111 peaks were analysed to determine the volume fraction changes and hence the kinetics of the phase transformation. Asymmetry and broadening in the α-200 and γ-200 peaks were quantified to lattice parameter changes due to carbon redistribution as well as the effects of size and dislocation density. Atom Probe Tomography was used to confirm that, despite the presence of 1.5 mass % Si, carbide formation was evident. This carbide formation is the cause of poor ductility, which is lower than expected in such steels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional interfacial grain boundary network in a fully austenitic high-manganese steel was studied as a function of all five macroscopic crystallographic parameters (i.e. lattice misorientation and grain boundary plane normal) using electron backscattering diffraction mapping in conjunction with focused ion beam serial sectioning. The relative grain boundary area and energy distributions were strongly influenced by both the grain boundary plane orientation and the lattice misorientation. Grain boundaries terminated by (1 1 1) plane orientations revealed relatively higher populations and lower energies compared with other boundaries. The most frequently observed grain boundaries were {1 1 1} symmetric twist boundaries with the Σ3 misorientation, which also had the lowest energy. On average, the relative areas of different grain boundary types were inversely correlated to their energies. A comparison between the current result and previously reported observations (e.g. high-purity Ni) revealed that polycrystals with the same atomic structure (e.g. face-centered cubic) have very similar grain boundary character and energy distributions. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.