2 resultados para lattice codes

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we investigate the impact of channel estimation error on the achievable common rate and error performance of amplify and forward (AF) multi-way relay networks (MWRNs). Assuming lattice codes with large dimensions, we provide the analytical expressions for the end-to-end SNR at the users and obtain upper bounds on the achievable common rate for an AF MWRN. Moreover, considering binary phase shift keying (BPSK) modulation as the simplest case of lattice codes, we obtain the average bit error rate (BER) for a user in an AF MWRN. The analysis shows that the average BER is a linearly increasing function and the achievable common rate is a linearly decreasing function of the channel estimation error. On the other hand, the average BER decreases and the achievable common rate increases with increasing correlation between the true and the estimated channel. Also, we observe that the AFprotocol is robust against increasing number of users in terms of error performance. We show that when the decoding user has better channel conditions compared to other users, AF relaying gives a better error performance and common rate. Finally, simulation results are provided to verify the validity of our analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-way relay networks (MWRNs) allow multiple users to exchange information with each other through a single relay terminal. MWRNs are often incorporated with capacity achieving lattice codes to enable the benefits of high-rate signal constellations to be extracted. In this paper, we analytically characterize the symbol error rate (SER) performance of a functional decode and forward (FDF) MWRN in the presence of channel estimation errors. Considering Μ-ary quadrature amplitude modulation(QAM) with square constellations as an important special case of lattice codes, we obtain asymptotic expressions for the average SER for a user in FDF MWRN. The accuracy of the analysis at high signal-to-noise ratio is validated by comparison with the simulation results. The analysis shows that when a user decodes other users with better channel conditions than itself, the decoding user experiences better error performance. The analytical results allow system designers to accurately assess the non-trivial impact of channel estimation errors and the users’ channel conditions on the SER performance of a FDF MWRN with M-QAM modulation.