2 resultados para lateral composition modulation

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1β (IL-1β, 1 μg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1β-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1β-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1β administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1β could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1β.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sesamin, a major sesame seed lignan, has diverse biological functions including the modulation of molecular actions in lipid metabolic pathways and reducing cholesterol levels. Vertebrates have different capacities to biosynthesize long-chain PUFA from dietary precursors and sesamin can enhance the biosynthesis of ALA to EPA and DHA in marine teleost. Early juvenile barramundi, Lates calcarifer, were fed for two weeks on diets rich in ALA or SDA derived from linseed or Echium plantagineum, respectively. Both diets contained phytosterols and less cholesterol compared with a standard fish oil-based diet. The growth rates were reduced in the animals receiving sesamin regardless of the dietary oil. However, the relative levels of n-3 LC-PUFA in total lipid, but not the phospholipid, increased in the whole body by up to 25% in animals fed on sesamin with ALA or SDA. Sesamin reduced the relative levels of triacylglycerols and increased polar lipid, and did not affect the relative composition of phospholipid subclasses or sterols. Sesamin is a potent modulator for LC-PUFA biosynthesis in animals, but probably will have more effective impact at advanced ages. By modulating certain lipid metabolic pathways, sesamin has probably disrupted the body growth and development of organs and tissues in early juvenile barramundi.