6 resultados para integrated device

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development of a microfluidic methodology, using RNA extraction and reverse transcription PCR, for investigating expression levels of cytochrome P450 genes. Cytochrome P450 enzymes are involved in the metabolism of xenobiotics, including many commonly prescribed drugs, therefore information on their expression is useful in both pharmaceutical and clinical settings. RNA extraction, from rat liver tissue or primary rat hepatocytes, was performed using a silica-based solid-phase extraction technique. Following elution of the purified RNA, amplification of target sequences for the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the cytochrome P450 gene CYP1A2, was carried out using a one-step reverse transcription PCR. Once the microfluidic methodology had been optimized, analysis of control and 3-methylcholanthrene-induced primary rat hepatocytes were used to evaluate the system. As expected, GAPDH was consistently expressed, whereas CYP1A2 levels were found to be raised in the drug-treated samples. The proposed system offers an initial platform for development of both rapid throughput analyzers for pharmaceutical drug screening and point-of-care diagnostic tests to aid provision of drug regimens, which can be tailor-made to the individual patient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An integrated system employing anion exchange for the extraction of DNA from biological samples prior to polymerase chain reaction DNA amplification has been developed, based on microfluidic methodology utilising electrokinetic pumping. In this system, the biological samples were added directly to chitosan-coated silica beads to facilitate DNA immobilisation. The purified, pre-concentrated DNA was then eluted using a combination of electro-osmotic flow enhanced with electrophoretic mobility, which enable DNA to be transported by both mechanisms into the DNA amplification chamber. Through optimisation of the DNA elution conditions, average DNA extraction efficiencies of 69.1% were achievable. Subsequent DNA amplification performed on the microfluidic system demonstrated not only the ability to use electrokinetic movement to integrate the two processes on a single device, but also that the quality and quantity of DNA eluted was suitable for downstream analysis. This work offers an attractive real-world to chip interface and a route to simpler Lab-on-a-Chip technology which eliminates the need for moving parts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on drug delivery devices is progressing rapidly with the main objective being the delivery of precise quantity of drugs into the target area of the body. A drug delivery device (DDD) needs to accurately control the flow rate of drug delivery and protects the body from undesired additional doses. An integrated microfluidic drug delivery device (IMDDD) is a miniature device that can regulate and monitor the delivery of the right amount of drug using micro-scale components. IMDDDs offer several advantages including ease of use, electro-chemical controllability, low power consumption, simplicity, fast fabrication, and good bio-compatibility. Various IMDDDs have been developed for treatment of cancer, cardiovascular disorder, eye and brain diseases, stress, and diabetes. This paper presents a generic architecture for IMDDDs, discusses the existing drug delivery methods, summarizes the specifications of the components, and identifies a number of performance evaluation parameters. The operation of IMDDDs is presented through fourteen potential internal components. In addition, recommendations on how enhance the design and fabrication process of IMDDDs are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high speed running. Thirteen subjects performed three sprint efforts over a 40 m distance (n = 39). Acceleration was measured using a 100 Hz tri-axial accelerometer integrated within a wearable tracking device (SPI-HPU, GPSports, Canberra). To provide a concurrent measure of acceleration, timing gates were positioned at 10 m intervals (0 m - 40 m). Accelerometer data collected during 0 m - 10 m and 10 m - 20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3 point moving average and a 10 point moving average. The accelerometer could not measure average acceleration values during high speed running. The accelerometer significantly overestimated average acceleration values during both 0 m - 10 m and 10 m - 20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091 - 0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports integrated accelerometers incorporate a gravity compensation formula the usefulness of any accelerometer derived algorithms is questionable.