5 resultados para integrable 3-wave interactions

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure of a 1,2,3-trisubstituted imidazolium salt of the bis[(trifluoromethyl)sulfonyl)]amide ion is presented; this salt is a prototype for similar, room temperature liquid, imidazolium salts; the structure shows that the anion and cation interact weakly, with little if any hydrogen bonding present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5′ end of active coding regions but a decrease of H3K4 dimethylation at the 3′ end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3′ end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3' end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 homologues, but not the yeast protein, carry 5' RNA kinase activity. We show that depletion of Clp1 in yeast promoted defective 3' end formation and RNA polymerase II termination; however, cells expressing Clp1 with mutant P-loops displayed only minor defects in gene expression. Similarly, purified and reconstituted mutant CF IA factors that interfered with ATP binding complemented CF IA depleted extracts in coupled in vitro transcription/3' end processing reactions. We found that Clp1 was required to assemble recombinant CF IA and that certain P-loop mutants failed to interact with the CF IA subunit Pcf11. In contrast, mutations in Clp1 enhanced binding to the 3' endonuclease Ysh1 that is a component of CPF. Our results support a structural role for the Clp1 P-loop motif. ATP binding by Clp1 likely contributes to CF IA formation and cross-factor interactions during the dynamic process of 3' end formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the effects of altered dietary n-3/n-6 LC-PUFA ratio, adaptation to diet over time, different water temperatures, and their interactions on nutrients and fatty acids digestibility in juvenile Atlantic salmon. Three experimental diets were formulated to be identical, with the only exception of the ratio of eicosapentaenoic acid (EPA, 20:5n-3) to arachidonic acid (ARA, 20:4n-6), and fed to triplicate groups of juvenile Atlantic salmon (Salmo salar) of 55. g initial body weight. Fish were reared in a fully controlled recirculating aquaculture system, fed to apparent satiety twice daily and kept at 10. °C and for an initial period of 100. days, and faeces were collected for digestibility estimation. Then, half of the fish of each experimental tank were moved to a separate system, where the water temperature was gradually increased up to 20. °C. Fish were maintained in the two systems for an additional period of 50. days, and faeces were collected for digestibility estimation from both groups of fish at the two water temperatures. This study concluded that dietary treatments and time had only minor effects, whereas environmental temperature resulted in modified digestibility values, with increased nutrient digestibility with increasing temperature. Varying EPA/ARA ratio in the diet had only minor direct effects on digestibility, with no direct effect on overall nutrients digestibility, and fundamentally only statistically significant effects in the fatty acid digestibility of EPA and ARA themselves. Because of current increasing pressure for more efficient fish oil replacement strategies, increasing interest in dietary ARA in aquafeed and increasing relevance and occurrence of sub-optimal rearing temperature in commercial aquaculture, this study can be considered to be important as it provided a series of fundamental information, which are envisaged to be useful towards addressing these constraints and possible nutritional remedial strategies.