4 resultados para impregnation

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of aluminium foams can be improved by matrix reinforcement and resin-impregnation methods. In the present study, aluminium foams were reinforced by both ceramic particulate reinforcing of the aluminium matrix and resin-impregnating pores. The mechanical properties and the energy absorption of the reinforced aluminium foams were investigated by dynamic and quasi-static compression. Results indicated that the ceramic particle additions of CBN, SiC and B4C in aluminium foams increase the peak stress, elastic modulus and energy absorption of the aluminium foams, under both conditions of dynamic and quasi-static compression. Moreover, the aluminium foams with and without ceramic particle additions exhibited obvious strain rate sensitivity during dynamic compression. Furthermore, the resin-impregnation improves the mechanic properties and energy absorption of aluminium foams significantly. However, aluminium foams with resin-impregnation showed negligible strain rate sensitivity under dynamic compression. It is reported that both the ceramic particle addition and resin-impregnation can be effective techniques to improve the mechanical and the energy absorption properties of aluminium foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of polymer electrolyte fuel cells (PEFCs) is substantially influenced by the morphology of the gas diffusion layer. Cells utilising sintered gas diffusion layers made with a low pore volume Acetylene Black carbon, at an optimised thickness, showed better performance compared with cells containing Vulcan XC-72R carbon. The cells were optimised using both oxygen and air as oxidants showing that different conditions were required in each case to achieve optimum cell performance. A model, in which the hydrophobicity and porosity of the diffusion layer affect water impregnation and gas diffusion through the gas diffusion layer, is presented to explain the influence of the diffusion layer morphology on cell performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel electrodeposition technique for preparing the catalyst layer in polymer electrolyte membrane fuel cells has been designed, which may enable an increase in the level of platinum utilisation currently achieved in these systems. This method consists of a two-step procedure involving the impregnation of platinum ions into a preformed catalyst layer (via an ion-exchange into the Nafion polymer electrolyte), followed by a potentiostatic reduction. The concentration of Nafion within the catalyst layer was found to have a significant bearing on the size of the platinum deposits. The preparation of catalyst layers containing a desired platinum loading should also be possible using this method. Surface areas of the platinum deposits were determined using cyclic voltammetry. The prepared catalyst was compared with a conventional electrode made from E-TEK Pt/C. Scanning electron microscopy was used to investigate the dispersion of the platinum particles. Platinum loadings were determined quantitatively by atomic absorption spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main problems of wool as an important proteinous fiber is low resistance against alkali media. Finding a way to solve this problem without any influences on other fiber characteristics is still a matter of research. Using nano particles on textile materials is a new approach to produce novel properties. Here, nano titanium dioxide (NTO) particles along with butane tetra carboxylic acid (BTCA) were sonicated in the ultra sound bath and applied as a nano colloid on the wool fabric. BTCA played different roles as wool cross-linker, a polyanionic agent, and stabilizer for nano TiO2. Various concentrations of NTO and BTCA were applied through impregnation of the fabric in ultrasonic bath followed by curing. The resistance of fabrics against alkali was assessed by solubility in sodium hydroxide and the hydrophilicity monitored by the water drop absorption time and the contact angle before and after UV irradiation. Interestingly, the alkali solubility of the nano TiO2 treated wool fabrics reduced while the fabric became more hydrophilic. This fact was shown by the testing results and is thoroughly discussed in the article. The response surface methodology (RSM) was also applied to find the optimum conditions for the wool fabric treatment.