9 resultados para imbalanced data

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of multi-class pattern classification techniques are proposed for learning from balanced datasets. However, in several real-world domains, the datasets have imbalanced data distribution, where some classes of data may have few training examples compared for other classes. In this paper we present our research in learning from imbalanced multi-class data and propose a new approach, named Multi-IM, to deal with this problem. Multi-IM derives its fundamentals from the probabilistic relational technique (PRMs-IM), designed for learning from imbalanced relational data for the two-class problem. Multi-IM extends PRMs-IM to a generalized framework for multi-class imbalanced learning for both relational and non-relational domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning from imbalanced data is a challenging task in a wide range of applications, which attracts significant research efforts from machine learning and data mining community. As a natural approach to this issue, oversampling balances the training samples through replicating existing samples or synthesizing new samples. In general, synthesization outperforms replication by supplying additional information on the minority class. However, the additional information needs to follow the same normal distribution of the training set, which further constrains the new samples within the predefined range of training set. In this paper, we present the Wiener process oversampling (WPO) technique that brings the physics phenomena into sample synthesization. WPO constructs a robust decision region by expanding the attribute ranges in training set while keeping the same normal distribution. The satisfactory performance of WPO can be achieved with much lower computing complexity. In addition, by integrating WPO with ensemble learning, the WPOBoost algorithm outperformsmany prevalent imbalance learning solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional learning techniques learn from flat data files with the assumption that each class has a similar number of examples. However, the majority of real-world data are stored as relational systems with imbalanced data distribution, where one class of data is over-represented as compared with other classes. We propose to extend a relational learning technique called Probabilistic Relational Models (PRMs) to deal with the imbalanced class problem. We address learning from imbalanced relational data using an ensemble of PRMs and propose a new model: the PRMs-IM. We show the performance of PRMs-IM on a real university relational database to identify students at risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compared with conventional two-class learning schemes, one-class classification simply uses a single class for training purposes. Applying one-class classification to the minorities in an imbalanced data has been shown to achieve better performance than the two-class one. In this paper, in order to make the best use of all the available information during the learning procedure, we propose a general framework which first uses the minority class for training in the one-class classification stage; and then uses both minority and majority class for estimating the generalization performance of the constructed classifier. Based upon this generalization performance measurement, parameter search algorithm selects the best parameter settings for this classifier. Experiments on UCI and Reuters text data show that one-class SVM embedded in this framework achieves much better performance than the standard one-class SVM alone and other learning schemes, such as one-class Naive Bayes, one-class nearest neighbour and neural network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The severe class distribution shews the presence of underrepresented data, which has great effects on the performance of learning algorithm, is still a challenge of data mining and machine learning. Lots of researches currently focus on experimental comparison of the existing re-sampling approaches. We believe it requires new ways of constructing better algorithms to further balance and analyse the data set. This paper presents a Fuzzy-based Information Decomposition oversampling (FIDoS) algorithm used for handling the imbalanced data. Generally speaking, this is a new way of addressing imbalanced learning problems from missing data perspective. First, we assume that there are missing instances in the minority class that result in the imbalanced dataset. Then the proposed algorithm which takes advantages of fuzzy membership function is used to transfer information to the missing minority class instances. Finally, the experimental results demonstrate that the proposed algorithm is more practical and applicable compared to sampling techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Being an important source for real-time information dissemination in recent years, Twitter is inevitably a prime target of spammers. It has been showed that the damage caused by Twitter spam can reach far beyond the social media platform itself. To mitigate the threat, a lot of recent studies use machine learning techniques to classify Twitter spam and report very satisfactory results. However, most of the studies overlook a fundamental issue that is widely seen in real-world Twitter data, i.e., the class imbalance problem. In this paper, we show that the unequal distribution between spam and non-spam classes in the data has a great impact on spam detection rate. To address the problem, we propose an ensemble learning approach, which involves three steps. In the first step, we adjust the class distribution in the imbalanced data set using various strategies, including random oversampling, random undersampling and fuzzy-based oversampling. In the next step, a classification model is built upon each of the redistributed data sets. In the final step, a majority voting scheme is introduced to combine all the classification models. Experimental results obtained using real-world Twitter data indicate that the proposed approach can significantly improve the spam detection rate in data sets with imbalanced class distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data in many biological problems are often compounded by imbalanced class distribution. That is, the positive examples may largely outnumbered by the negative examples. Many classification algorithms such as support vector machine (SVM) are sensitive to data with imbalanced class distribution, and result in a suboptimal classification. It is desirable to compensate the imbalance effect in model training for more accurate classification. In this study, we propose a sample subset optimization technique for classifying biological data with moderate and extremely high imbalanced class distributions. By using this optimization technique with an ensemble of SVMs, we build multiple roughly balanced SVM base classifiers, each trained on an optimized sample subset. The experimental results demonstrate that the ensemble of SVMs created by our sample subset optimization technique can achieve higher area under the ROC curve (AUC) value than popular sampling approaches such as random over-/under-sampling; SMOTE sampling, and those in widely used ensemble approaches such as bagging and boosting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Medical and biological data are commonly with small sample size, missing values, and most importantly, imbalanced class distribution. In this study we propose a particle swarm based hybrid system for remedying the class imbalance problem in medical and biological data mining. This hybrid system combines the particle swarm optimization (PSO) algorithm with multiple classifiers and evaluation metrics for evaluation fusion. Samples from the majority class are ranked using multiple objectives according to their merit in compensating the class imbalance, and then combined with the minority class to form a balanced dataset.

Results
One important finding of this study is that different classifiers and metrics often provide different evaluation results. Nevertheless, the proposed hybrid system demonstrates consistent improvements over several alternative methods with three different metrics. The sampling results also demonstrate good generalization on different types of classification algorithms, indicating the advantage of information fusion applied in the hybrid system.

Conclusion
The experimental results demonstrate that unlike many currently available methods which often perform unevenly with different datasets the proposed hybrid system has a better generalization property which alleviates the method-data dependency problem. From the biological perspective, the system provides indication for further investigation of the highly ranked samples, which may result in the discovery of new conditions or disease subtypes.