5 resultados para hydrogen chloride

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Undergraduate students often have the misconception that molecules have fixed, unchanging bond lengths. This article discusses how linear-molecule rotational band spacings in infrared spectroscopy can be used as a qualitative, visual demonstration of the elongation of average bond lengths on vibrational excitation. The method does not depend on a detailed mathematical analysis of the spectra. In UV–vis spectroscopy, the rotational band spacings give rise to distinctive linear-molecule rotational contours, which easily show whether the average bond length has increased or decreased. The method is based on a spreadsheet simulation of the vibration–rotation or rovibronic (electronic–vibration–rotation) spectrum and is applied to hydrogen chloride IR, iodine UV–vis, and nitrogen UV–vis spectra in this article.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the crystal structure of the title compound, C10H10N3+·Cl-·[P(O)(OH)2H], the chloride ion and phosphorous acid form a one-dimensional hydrogen-bonded chain, while the 2-(2-pyridylamino)pyridinium cations form a second chain through [π]-[π] stacking. The two parallel chains are connected via a PO...H-N hydrogen bond and a weak pyridinium-to-chloride interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aymmetric unit of the title compound, C8H18N+·Cl -, consists of one crystallographically independent 1-methyl-1-propyl-pyrrolidinium cation and one chloride anion, both of which lie in general positions. Minor hydrogen-bonded C - H⋯Cl inter-actions occur. However, no classical hydrogen bonding is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sewer odour and corrosion is caused by the reduction of sulphide ions and the release of hydrogen sulphide gas (H2S) into the sewer atmosphere. The reduction of sulphide is determined by its dissipation rate which depends on many processes such as emission, oxidation and precipitation that prevail in wastewater environments. Two factors that mainly affect the dissipation of sulphide are sewer hydraulics and wastewater characteristics; modification to the latter by dosing certain chemicals is known as one of the mitigation strategies to control the dissipation of sulphide. This study investigates the dissipation of sulphide in the presence of NaOH, Mg(OH)2, Ca(NO3)2 and FeCl3 and the dissipation rate is developed as a function of hydraulic parameters such as the slope of the sewer and the velocity gradient. Experiments were conducted in a 18m experimental sewer pipe with adjustable slope to which, firstly no chemical was added and secondly each of the above mentioned chemicals was supplemented in turn. A dissipation rate constant of 2×10-6 for sulphide was obtained from experiments with no chemical addition. This value was then used to predict the sulphide concentration that was responsible for the emission of H2S gas in the presence of one of the above mentioned four chemicals. It was found that the performance of alkali substances (NaOH and Mg(OH)2) in suppressing the H2S gas emission was excellent while ferric chloride showed a moderate mitigating effect due to its slow reaction kinetics. Calcium nitrate was of little value since the wastewater used in this study experienced almost no biological growth. Thus the effectiveness of selected chemicals in suppressing H2S gas emission had the following order: NaOH ≥ Mg(OH)2 ≥ FeCl3 ≥ Ca(NO3)2.