7 resultados para hydrodynamic model

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectively assessing ecological benefits of competing watering strategies is difficult. We present a framework of coupled models to compare scenarios, using the Coorong, the estuary for the MurrayDarling River system in South Australia, as a case study. The framework links outputs from recent modelling of the effects of climate change on water availability across the MurrayDarling Basin to a hydrodynamic model for the Coorong, and then an ecosystem-response model. The approach has significant advantages, including the following: (1) evaluating management actions is straightforward because of relatively tight coupling between impacts on hydrology and ecology; (2) scenarios of 111 years reveal the impacts of realistic climatic and flow variability on Coorong ecology; and (3) ecological impact is represented in the model by a series of ecosystem states, integrating across many organisms, not just iconic species. We applied the approach to four flow scenarios, comparing conditions without development, current water-use levels, and two predicted future climate scenarios. Simulation produced a range of hydrodynamic conditions and consequent distributions of ecosystem states, allowing managers to compare scenarios. This approach could be used with many climates and/or management actions for optimisation of flow delivery to environmental assets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined insitu observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Current drift can have major and potentially negative effects on the lives of weakly swimming species in particular. Fossette etal. show that jellyfish modulate their swimming behavior in relation to current. Such oriented swimming has significant life-history benefits, such as increased bloom formation and a reduction of probability of stranding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of possibilities given by the developed Cellular Automata–Finite Element (CAFE) multi-scale model for prediction of the initiation and propagation of micro-shear bands and shear bands in metallic materials subjected to plastic deformation is described in the paper. Particular emphasis in defining the criterion for initiation of micro-shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of those phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi-scale model of strain localization. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the paper. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is presented in the paper as well. In this approach remeshing becomes possible and mesh distortion, which limits application of the CAFE method to simple deformation processes, is eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulaA detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.tions are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model developed previously to analyze force measurements between two deformable droplets in the atomic force microscope [Langmuir 2005, 21, 2912-2922] is used to model the drainage of an aqueous film between a mica plate and a deformable mercury drop for both repulsive and attractive electrical double-layer interactions between the mica and the mercury. The predictions of the model are compared with previously published data [Faraday Discuss. 2003, 123, 193-206] on the evolution of the aqueous film whose thickness has been measured with subnanometer precision. Excellent agreement is found between theoretical results and experimental data. This supports the assumptions made in the model which include no-slip boundary conditions at both interfaces. Furthermore, the successful fit attests to the utility of the model as a tool to explore details of the drainage mechanisms of nanometer-thick films in which fluid flow, surface deformations, and colloidal forces are all involved. One interesting result is that the model can predict the time at which the aqueous film collapses when attractive mica-mercury forces are present without the need to invoke capillary waves or other local instabilities of the mercury/electrolyte interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Territoriality is widely accepted as the mechanism responsible for density-dependent mortality, emigration, and 'self-thinning' of populations of juvenile salmonine fishes in streams. Numerous studies have focused on territoriality exclusively in stream (lotic) environments and thus have fostered a stereotyped view of juvenile salmonines as sedentary and territorial. We term this behavioural paradigm the central-place territorial model (CPTM).

2. We tested predictions characterizing the CPTM for young-of-the-year (YOY) brook charr (Salvelinus fontinalis) in two Canadian lakes to determine if territoriality may also potentially limit space and population size of brook charr in lakes.

3. Our findings were not consistent with the CPTM. Fish in both lakes were not central-place forages. Maximum displacement distance did not increase with body length as predicted by the general salmonine model of Grant and Kramer (1990). Net displacement distanced increased with the proportion of time spent moving. Aggressive frequency was greatest for fish which spent large proportions of time moving and did not defend from a central-place.

4. Fish in both lakes were rarely aggressive, highly active, and often moved back over the same areas. However, lake fish which migrated to a tributary stream had no net displacement (central-place foraging) illustrating the immediate effects of current on foraging tactics and space-use.

5. The effect of hydrodynamic environment (flowing vs. still water) on fish behaviour needs to be explicitly considered in future models of salmonine behaviour.