40 resultados para human-brain

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective This study aimed to identify persistent morphological changes subsequent to an acute single-time exposure to sarin, a highly poisonous organophosphate, and the neurobiological basis of long-lasting somatic and cognitive symptoms in victims exposed to sarin.

Methods Thirty-eight victims of the 1995 Tokyo subway sarin attack, all of whom had been treated in an emergency department for sarin intoxication, and 76 matched healthy control subjects underwent T1-weighted and diffusion tensor magnetic resonance imaging (DTI) in 2000 to 2001. Serum cholinesterase (ChE) levels measured immediately and longitudinally after the exposure and the current severity of chronic reports in the victims were also evaluated.

Results The voxel-based morphometry exhibited smaller than normal regional brain volumes in the insular cortex and neighboring white matter, as well as in the hippocampus in the victims. The reduced regional white matter volume correlated with decreased serum cholinesterase levels and with the severity of chronic somatic complaints related to interoceptive awareness. Voxel-based analysis of diffusion tensor magnetic resonance imaging further demonstrated an extensively lower than normal fractional anisotropy in the victims. All these findings were statistically significant (corrected p < 0.05).

Interpretation Sarin intoxication might be associated with structural changes in specific regions of the human brain, including those surrounding the insular cortex, which might be related to elevated subjective awareness of internal bodily status in exposed individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Included among the topics: Cognitive development, learning, and drug use. Neurobiology of the action of drugs of abuse. Findings in adolescents with substance dependence based on neuroimaging tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep brain stimulation (DBS), a surgical technique to treat certain neurologic and psychiatric conditions, relies on pre-determined stimulation parameters in an open-loop configuration. The major advancement in DBS devices is a closed-loop system that uses neurophysiologic feedback to dynamically adjust stimulation frequency and amplitude. Stimulation-driven neurochemical release can be measured by fast-scan cyclic voltammetry (FSCV), but existing FSCV electrodes rely on carbon fiber, which degrades quickly during use and is therefore unsuitable for chronic neurochemical recording. To address this issue, we developed durable, synthetic boron-doped diamond-based electrodes capable of measuring neurochemical release in humans. Compared to carbon fiber electrodes, they were more than two orders-of-magnitude more physically-robust and demonstrated longevity in vitro without deterioration. Applied for the first time in humans, diamond electrode recordings from thalamic targets in patients (n = 4) undergoing DBS for tremor produced signals consistent with adenosine release at a sensitivity comparable to carbon fiber electrodes. (Clinical trials # NCT01705301).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biologically human brain processes information in both uniimodal and multimodal approaches. In fact, information is progressively abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has exponentially produced various sources of data, which could be likened to being the state of multimodality in human brain. Therefore, this is an inspiration to develop a methodology for exploring multimodal data and further identifying multi-view patterns. Specifically, we propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. A structurally adaptive neural network is deployed to implement the proposed model. Furthermore, the acquisition of multi-view patterns with the proposed model is
demonstrated and discussed with some experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The human brain processes information in both unimodal and multimodal fashion where information is progressively captured, accumulated, abstracted and seamlessly fused. Subsequently, the fusion of multimodal inputs allows a holistic understanding of a problem. The proliferation of technology has produced various sources of electronic data and continues to do so exponentially. Finding patterns from such multi-source and multimodal data could be compared to the multimodal and multidimensional information processing in the human brain. Therefore, such brain functionality could be taken as an inspiration to develop a methodology for exploring multimodal and multi-source electronic data and further identifying multi-view patterns. In this paper, we first propose a brain inspired conceptual model that allows exploration and identification of patterns at different levels of granularity, different types of hierarchies and different types of modalities. Secondly, we present a cluster driven approach for the implementation of the proposed brain inspired model. Particularly, the Growing Self Organising Maps (GSOM) based cross-clustering approach is discussed. Furthermore, the acquisition of multi-view patterns with clusters driven implementation is demonstrated with experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human altruistic cooperativeness, one of the most important components of our highly organized society, is along with a greatly enlarged brain relative to body size a spectacular outlier in the animal world. The "social-brain hypothesis" suggests that human brain expansion reflects an increased necessity for information processing to create social reciprocity and cooperation in our complex society. The present study showed that the young adult females (n = 66) showed greater Cooperativeness as well as larger relative global and regional gray matter volumes (GMVs) than the matched males (n = 89), particularly in the social-brain regions including bilateral posterior inferior frontal and left anterior medial prefrontal cortices. Moreover, in females, higher cooperativeness was tightly coupled with the larger relative total GMV and more specifically with the regional GMV in most of the regions revealing larger in female sex-dimorphism. The global and most of regional correlations between GMV and Cooperativeness were significantly specific to female. These results suggest that sexually dimorphic factors may affect the neurodevelopment of these "social-brain" regions, leading to higher cooperativeness in females. The present findings may also have an implication for the pathophysiology of autism; characterized by severe dysfunction in social reciprocity, abnormalities in social-brain, and disproportionately low probability in females.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis describes the development of a sensing electrode and electronic research platform that enables the measurement of fluctuating levels of neurotransmitters in the human brain. Boron doped diamond electrodes were created via a custom developed chemical vapor deposition reactor for measurement of neurotransmitters using Fast Scan Cyclic Voltammetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously we found elevated beacon gene expression in the hypothalamus of obese Psammomys obesus. Beacon administration into the lateral ventricle of P. obesus stimulated food intake and body weight gain. In the current study we used yeast two-hybrid technology to screen for proteins in the human brain that interact with beacon. CLK4, an isoform of cdc2/cdc28-like kinase family of proteins, was identified as a strong interacting partner for beacon. Using active recombinant proteins and a surface plasmon resonance based detection technique, we demonstrated that the three members of this subfamily of kinases (CLK1, 2, and 4) all interact with beacon. Based on the known sequence and functional properties of beacon and CLKs, we speculate that beacon could either modulate the function of key regulatory molecules such as PTP1B or control the expression patterns of specific genes involved in the central regulation of energy metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibromyalgia is an unexplained but often debilitating syndrome, characterised primarily by widespread pain. This thesis provides direct evidence that physical and emotional stress exacerbates pain, fatigue and other symptoms of Fibromyalgia and supports the assertion that symptoms may be related to disordered stress-response mechanisma in the human brain. The professional portfolio presents four clinical case studies that demonstrate the utility of Acceptance and Commitment Therapy (ACT) in the psychotherapeutic treatment of people with chronic illness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To develop an objective and repeatable method of identification and classification of animal fibres, two different integrated systems were developed to mimic the human brain's ability to undertake feature extraction and discrimination of animal fibres. Both integrated systems are basically composed of an image processing system and an artificial neural network system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to examine quantitative differences in lobar cerebral cortical volumes in a healthy adult population. Quantitative volumetric MRI of whole brain, cerebral and cerebellar volumes was performed in a cross-sectional analysis of 97 normal volunteers, with segmented frontal, temporal, parietal and occipital cortical volumes measured in a subgroup of 60 subjects, 30 male and 30 female, matched for age and sex. The right cerebral hemisphere was larger than the left across the study group with a small (<1%) but significant difference in symmetry (P < 0.001). No difference was found between volumes of right and left cerebellar hemispheres. Rightward cerebral cortical asymmetry (right larger than left) was found to be significant across all lobes except parietal. Males had greater cerebral, cerebellar and cerebral cortical lobar volumes than females. Larger male cerebral cortical volumes were seen in all lobes except for left parietal. Females had greater left parietal to left cerebral hemisphere and smaller left temporal to left cerebral hemisphere ratios. There was a mild reduction in cerebral volumes with age, more marked in males. This study confirms and augments past work indicating underlying structural asymmetries in the human brain, and provides further evidence that brain structures in humans are differentially sensitive to the effects of both age and sex.