39 resultados para hot temperature

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In South China, the Changhsingian brachiopods are extraordinarily abundant and diverse, comprising 468 species in 144 genera. However, approximately 91% of brachiopod species were eliminated during the Permian-Triassic (P-Tr) mass extinction event. Brachiopods in the aftermath of the P-Tr mass extinction were extremely rare, with only one opportunistic taxon, Lingulida, occasionally found in the Griesbachian and Smithian at a high abundance. Species-diversity of articulated brachiopods in the early Griesbachian, late Griesbachian, Dienerian, and Smithian are 35, 3, 2, and 0, respectively. Although a few of Mesozoic-type species occurred in the Griesbachian, Dienerian and Smithian, a marked diversification of brachiopods occurred in the Spathian and early Anisian and was characterised by 9 and 17 Mesozoic-type species, respectively. The diversification of brachiopods in the Spathian and early Anisian coincides with the contemporaneous expansion of the refuge zone, suggesting that the improvement of marine environmental conditions (e.g., lethally hot temperature and anoxic seawater) played a key role in brachiopod recovery after the P-Tr mass extinction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

• Guidelines reflecting contemporary clinical practice in the management of Buruli ulcer (Mycobacterium ulcerans infection) in Australia were published in 2007.

• Management has continued to evolve, as new evidence has become available from randomised trials, case series and increasing clinical experience with oral antibiotic therapy.

• Therefore, guidelines on the diagnosis, treatment and prevention of Buruli ulcer in Australia have been updated. They include guidance on the new role of antibiotics as first-line therapy; the shortened duration of antibiotic treatment and the use of all-oral antibiotic regimens; the continued importance, timing and role of surgery; the recognition and management of paradoxical reactions during antibiotic treatment; and updates on the prevention of disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the temperature and contact pressure conditions in hot stamped channels of boron steel. Hot stamping has been used for many years to produce high strength structural auto-motive components. The high tensile strengths achievable by hot stamping is beneficial where the intrusion during a vehicle crash is not desirable – e.g. for the vehicle occupant compartment. How-ever, the high blank temperatures and high temperature cycling causes a large amount of wear in the tooling. These conditions have led to high tool failures and die maintenance costs. Thus, un-derstanding the main causes of wear behaviour in the hot stamping process is of high interest to hot stampers.
To this aim, a generic 2D thermo-mechanical finite element model of a hat-shaped crash formed hot stamped component was developed (based on the authors previous hot stamp model), and a modified phase transformation model based on Scheil’s additive principle has been applied. The model was created in the finite element software ABAQUS Standard V6.13, including convection and radiation when the component was transferred from furnace to the tool as well as the air-cooling process. A USDFLD subroutine was used to model the phase transformation and a HET-VAL subroutine was used to model the latent heat. Contact heat conductance was a function of the pressure.
The authors have used techniques from their previous work on tool wear estimation for cold stamping to estimate the contact pressure on the tooling, and the amount of sliding that occurs over the tooling, and the corresponding tooling temperature. This data provides a unique data set to understand the wear on the tooling, and will eventually lead to a model for estimating tooling life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid method was used to identify kinetics of the recrystallization for two IF (Interstitial Free) steels which have different phosphorous and boron contents. The static and metadynamic softening behaviour of the materials for a range of strain rates and temperatures were quantified. The critical strain for initiation of strain independent softening was estimated for the IF steels in respect to the time for 50 percent softening after deformation. The results showed that the strain for the initiation of strain independent softening (often referred to as metadynamic recrystallization) varies with the Zener Hollomon parameter. Classic static recrystallization was observed at strains below the strain independent softening for all processing conditions and the strain rate had a strong effect on the time for strain independent softening. Results also revealed that static and metadynamic recrystallization was delayed owing to the phosphorous and boron alloying elements. Hence, the large strain at above no-recrystallization temperature may be required for the early stage of Finishing Stands Unit (FSU) in hot strip rolling mills to initiate austenite grain refinement of phosphorous and boron added IF steels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A duplex surface treatment has been developed involving the pre-treatment of hardened and tempered AISI H13 chromium hot-work tool steel by a ferritic nitrocarburising process, and a subsequent treatment of the nitrocarburised surface by a low-temperature chromium thermo-reactive deposition process.  The process formed a thin and hard chromium carbonitride surface layer above a hardened diffusion zone, and the low processing temperature allowed the properties of the core material to be retained. It is expected this surface treatment will find application in the treatment  of tooling used for aluminium forming operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural evolution during compression (at 350°C and a strain rate of 0.01s-1) was examined for magnesium alloy AZ31 received in the "as-cast" condition. It was revealed that at low strains, many twins are produced and dynamically recrystallized (DRX) grains form as a necklace along pre-existing grain boundaries. At higher strains, DRX stagnates, most likely due to the accommodation of deformation in the DRX fraction of the material. It was also observed that twin boundaries act as sites for the nucleation of DRX grains. The analysis was repeated for samples pre-compressed to a strain of 0.15 at room temperature prior to the hot deformation step. The idea of these additional tests was to increase the degree of twinning and therefore the density of sites for the nucleation of DRX. It was found that statically recrystallized (SRX) grains developed at the twins during heating to the test temperature. When these samples were deformed, the peak flow stress was reduced by approximately 20% and the development of DRX was enhanced. This can be attributed to the accelerated nucleation of DRX in the refined SRX structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model has been developed which describes the hot deformation and recrystallization behavior of austenite using a single internal variable: dislocation density. The dislocation density is incorporated into equations describing the rate of recovery and recrystallization. In each case no distinction is made between static and dynamic events, and the model is able to simulate multideformation processes. The model is statistically based and tracks individual populations of the dislocation density during the work-hardening and softening phases. After tuning using available data the model gave an accurate prediction of the stress–strain behavior and the static recrystallization kinetics for C–Mn steels. The model correctly predicted the sensitivity of the post deformation recrystallization behavior to process variables such as strain, strain rate and temperature, even though data for this were not explicitly incorporated in the tuning data set. In particular, the post dynamic recrystallization (generally termed metadynamic recrystallization) was shown to be largely independent of strain and temperature, but a strong function of strain rate, as observed in published experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the austenite grain size (AGS) for hot bar rolling of AISI4135 steel was predicted based on two different AGS evolution models available in the literature. In order to predict the AGS more accurately, both models were integrated with a three-dimensional non-isothermal finite element program by implementing a modified additivity rule. The predicted results based on two models for the square-diamond (S-D) and round-oval (R-O) pass bar rolling processes were compared with the experimental data available in the literature. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to compare both models and investigate the effect of these parameters on the AGS distributions. Such numerical results were found to be beneficial to understand the effect of the microstructure evolution model on the rolling processes better and control the processes more accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s−1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s−1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he microstructural evolution is examined during the hot compression of magnesium alloy AZ31 for both wrought and as-cast initial microstructures. The influences of strain, temperature, and strain rate on the dynamically recrystallized microstructures are assessed. Both the percentage dynamic recrysallization (DRX) and the dynamically recrystallized grain size were found to be sensitive to the initial microstructure and the applied deformation conditions. Lower Z conditions (lower strain rates and higher temperatures) yield larger dynamically recrystallized grain sizes and increased percentages of DRX, as expected. The rate with which the percentage DRX increases for the as-cast material is considerably lower than for the wrought material. Also, in the as-cast samples, the percentage DRX does not continue to increase toward complete DRX with decreasing Z. These observations may be attributed to the deformation becoming localized in the DRX fraction of the material. Also, the dynamically recrystallized grain size is generally larger in as-cast material than in wrought material, which may be attributed to DRX related to twins and the inhomogeneity of deformation. Orientation maps of the as-cast material (from electron backscattering diffraction (EBSD) data) reveal evidence of discontinuous DRX (DDRX) and DRX related to twins as predominant mechanisms, with some manifestation of continuous DRX (CDRX) and particle-stimulated nucleation (PSN).