152 resultados para hot pressing

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous 55Mg35NilOSi alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg-Ni-Si bulk amorphous components through powder metallurgy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

he microstructural evolution is examined during the hot compression of magnesium alloy AZ31 for both wrought and as-cast initial microstructures. The influences of strain, temperature, and strain rate on the dynamically recrystallized microstructures are assessed. Both the percentage dynamic recrysallization (DRX) and the dynamically recrystallized grain size were found to be sensitive to the initial microstructure and the applied deformation conditions. Lower Z conditions (lower strain rates and higher temperatures) yield larger dynamically recrystallized grain sizes and increased percentages of DRX, as expected. The rate with which the percentage DRX increases for the as-cast material is considerably lower than for the wrought material. Also, in the as-cast samples, the percentage DRX does not continue to increase toward complete DRX with decreasing Z. These observations may be attributed to the deformation becoming localized in the DRX fraction of the material. Also, the dynamically recrystallized grain size is generally larger in as-cast material than in wrought material, which may be attributed to DRX related to twins and the inhomogeneity of deformation. Orientation maps of the as-cast material (from electron backscattering diffraction (EBSD) data) reveal evidence of discontinuous DRX (DDRX) and DRX related to twins as predominant mechanisms, with some manifestation of continuous DRX (CDRX) and particle-stimulated nucleation (PSN).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, superfine wool powder was plasticized with glycerol and hot-pressed into a film. Scanning electron microscopy photos showed that the superfine wool powder could be molded into a smooth film and that the wool powder was distributed evenly in the cross section of the film. Fourier transform infrared analysis revealed no substantial changes in the chemical structure of the wool powder after hot pressing, but the absorbing peaks of glycerol were found in the spectrum. X-ray diffraction analysis showed that the overall crystallinity increased after the wool powder was hot-pressed into film. Thermogravimetry (TG) analysis indicated that the thermal stability of the hot-pressed film decreased. A transition point appeared in the TG curve of the wool hot-pressed film as glycerol was added. The differential thermal analysis curve of the film showed sharp absorbing peaks similar to that of wool powder. With increasing glycerol content, the film showed increasing ductility and softness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibers based regenerated protein draw much attention for recycling discarded protein resources and can produce biodegradable and environmental friendly polymers. In this study, superfine wool powder is blended with polypropylene (PP) to produce wool powder/PP blend film through extrusion and hot-pressing. Hydrogen peroxide is used to bleach the black colored surface of the blend films. The effects of peroxide concentration, bleaching time and powder content on the final whiteness and mechanical properties of the blend films are investigated.

The bleached films are dyed with acid red dyes and the dyed color is evaluated using a Computer Color Matching System. Color characters of dyed films, such as L*, a*, b*, ΔE*ab, C*ab and K/S values are measured and analyzed. The study not only reuses discarded wool resources into organic powder, widens the application of superfine wool powder on polymers, but also improves the dyeing properties of PP through the addition of protein content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a research work is described in which superfine wool powder was plasticised by glycerol and hot-pressed into a kind of thermoplastic film. SEM photos show that the powder is moulded into a smooth surface and is conglutinated into a continuous phase in the cross-section of the film. The glycerol content, moulding pressure, temperature and moulding time were changed in the moulding process. The sizes and thickness aw well as tensile strength, modulus, breaking elongation and breaking energy of the films were also tested to investigate the thermoplasticity and mechanical properties of the films. The best moulding techniques included a glycerol content of 30%, a moulding pressure of 5 MPa, a temperature of 160 °C and a moulding time of 5 minutes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous polymer/salt mixtures based on polyvinyl alcohol and poly(hydroxyethylacrylate) and poly(hydroxyethylmethacrylate) are described. The polyvinylalcohol materials have been prepared by a solvent free hot pressing technique as well as the traditional solvent casting method. The hot pressing technique allows the production of samples which are genuinely free of solvents and thereby has allowed an assessment in this work of the effect of residual solvent on conductivity. The acrylate materials were prepared by direct polymerization of monomer/salt mixtures, thus avoiding the need for solvents. These materials have glass transitions around or well above room temperature, but nonetheless have conductivities as high as 10−7 S/cm at room temperature. The temperature and composition dependence of conductivity are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of superhydrophobic surfaces with mechanical durability is challenging because the surface microstructure is easily damaged. Herein, we report superhydrophobic conductive graphite nanoplatelet (GNP)/vapor-grown carbon fiber (VGCF)/polypropylene (PP) composite coatings with mechanical durability by a hot-pressing method. The as-prepared GNP/VGCF/PP composite coatings showed water contact angle (WCA) above 150° and sliding angle (SA) less than 5°. The superhydrophobicity was improved with the increase of VGCF content in the hybrid GNP and VGCF fillers. The more VGCFs added in the GNP/VGCF/PP composite coating, the higher porosity on the surface was formed. Compared to the GNP/PP and VGCF/PP composite coatings, the GNP and VGCF hybrid fillers exhibited more remarkable synergistic effect on the electrical conductivity of the GNP/VGCF/PP composite coatings. The GNP/VGCF/PP composite coating with GNP:VGCF = 2:1 possessed a sheet resistance of 1 Ω/sq. After abrasion test, the rough microstructure of the GNP/VGCF/PP (2:1) composite coating was mostly restored and the composite coating retained superhydrophobicity, but not for the VGCF/PP composite coating. When the superhydrophobic surface is mechanically damaged with a loss of superhydrophobicity, it can be easily repaired by a simple way with adhesive tapes. Moreover, the oil-fouled composite surface can regenerate superhydrophobicity by wetting the surface with alcohol and subsequently burning off alcohol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Children are less efficient thermoregulators than are adults. During exercise, sweat evaporation is the most important physiological means of cooling the body. The sweat response in children, however, is less efficient than in adults, so children dissipate less heat though evaporative sweating and more through convection (the loss of heat through the skin) plus radiation. Children and adolescents with high levels of body fat and heavy builds are more susceptible to heat stress because they dissipate body heat less efficiently. Maintaining adequate hydration is crucial for preventing heat stress, Although water is often described as the best choice of fluid, studies on voluntary drinking habits and flavor preferences in children and adolescents suggest that greater consumption occurs when sports drinks are offered instead of water. Although a child's sweat contains less sodium and chloride than an adult's does, there appears to be no evidence that a child's performance improves when given beverages more diluted than those currently recommended for adults, More information is necessary to identify the optimal electrolyte and carbohydrate content of sports drinks for young athletes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallographic rotation field for deformation in torsion is such that it is possible for orientations close to stable orientations to rotate away from the stable orientation. A Taylor type model was used to demonstrate that this phenomenon has the potential to transform randomly generated low-angle boundaries into high-angle boundaries. After imposing an equivalent strain of 1.2, up to 40% of the simulated boundaries displayed a disorientation in excess of 15°. These high-angle boundaries were characterised by a disorientation axis close to parallel with the sample radial direction. A series of hot torsion tests was carried out on 1050 aluminium to seek evidence for boundaries formed by this mechanism. A number of deformation-induced high-angle boundaries were identified. Many of these boundaries showed disorientation axes and rotation senses similar to those seen in the simulations. Between 10% and 25% of all the high-angle boundary present in samples twisted to equivalent strains between 2 and 7 could be attributed to the present mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse emissions relative to conventional fossil fuel-powered systems. Very rarely has the life-cycle greenhouse emissions (including the embodied greenhouse emissions of manufacture) of solar hot water systems been analysed. The extent to which solar hot water systems can reduce emissions compared with conventional systems can be shown through a comparative life-cycle greenhouse emissions analysis. This method determined the time it takes for these net greenhouse emissions savings to occur, or the 'emissions payback period'. This paper presents the results of a life-cycle greenhouse emissions analysis of solar hot water systems in comparison with conventional hot water systems for a southern (Melbourne) and a northern (Brisbane) Australian city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. The progress of dynamic recrystallization and the recrystallized grain size were sensitive to processing conditions, as expected. This effect was more marked in the former than in the latter, compared to other metals. It was also found that, for structures containing between 80 and 95% dynamic recrystallization, abnormal grain growth occurred during annealing. Irrespective of the whether or not abnormal grain growth occurred, the annealing step weakened the crystallographic texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of magnesium AZ31 are examined following hot compression testing and annealing. The grain size, fraction dynamically recrystallized and, in a couple of cases, the crystallographic texture are reported. It was found that the progress of dynamic recrystallization is strongly sensitive to processing conditions but that the dynamically
recrystallized grain size was less sensitive to stress than in other metals. It was also found that, for structures containing between 80 and 95 % dynamic recrystallization, abnormal grain growth occurs during annealing. The crystallographic texture produced is also sensitive to the deformation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path.