52 resultados para high repetition rate

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tensile tests at high speeds corresponding to automotive crash events were conducted to understand the dynamic properties of rapidly cured woven carbon fiber composites. The High Strain Rate (HSR) experiments were conducted on a servo-hydraulic machine at constant velocities up to a maximum of 25 m/s (82 ft/s). Results from HSR tests were compared with the static results to determine the rate sensitivity of the composite. A high speed camera was used to capture the failure at HSR. The tensile properties of rapidly cured laminate were compared to oven cured laminate to justify its productivity while maintaining the desired properties. The methodology used to achieve constant velocity during HSR tests is discussed in detail. The specimen geometry was specially designed to suit the test rig and to achieve high speeds during tests. All the specimens failed with linear elasticity until sudden brittle fracture. The Scanning Electron Microscopy (SEM) images of the fracture zone were used to identify the failure modes observed at static and high strain rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the hot working of austenitic stainless steels the shape of the flow curve is strongly influenced by the strain rate. Low strain rate deformation results in flow curves typical of dynamic recrystallization (DRX) but as the strain rate increases the shape changes to a ‘flat-top’ curve. This has traditionally been thought to indicate no DRX is taking place and that dynamic recovery (DRV) is the only operating softening mechanism. Examining the work-hardening behaviour and corresponding deformation microstructures showed this is not the case for austenitic stainless steel, as clear evidence of dynamic recrystallization process can be seen. The post-deformation recrystallization kinetics can be modelled using a standard Avrami equation with an Avrami exponent, n, of 1.15. With an increasing value of the Zener-Hollomon parameter it was found that the kinetics of recrystallization become less strain rate sensitive until at the highest values (highest strain rates/lowest temperatures) the recrystallization kinetics become strain rate insensitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

ZnO powder showed anomalous evaporation behavior after its mechanical milling treatment under high-energy conditions. The amount of generated vapor is about 10 times higher in the first 15 min of annealing at 1300 °C than that of unmilled ZnO powders. The strong ball impacts are responsible for the greatly enhanced evaporation ability. Low-energy ball milling involving shearing actions and rare weak impacts leads only to a small evaporation rate enhancement. The possible explanation of the high evaporation rate of the heavily milled material is the existence of large fraction of weakly bonded atoms in grain boundaries, surface defects and strained areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microfluidics has the potential to enhance the understanding of the biological fluids under strain, due to the laminar nature of the fluid and the possibility to mimic the real conditions. We present advances on charaterization of a microfluidic platform to study high strain rate flows in the transport of biological fluids. These advances are improvements on the reproduction of a  constant extensional strain rate using micro contractions and development of 3D numerical models. The micro geometries have been fabricated in polydimethyl siloxame (PDMS) using standard soft-lithography techniques with a photolithographically patterned mold. A comparison of some microcontractions with different funnel characteristics is presented. The Micro Particle Image Velocimetry technique has been applied to validate the numerical simulations. We demonstrate the use of microfluidics in the reproduction of a large range of controllable extensional strains that can be used in the study of the effect of flow on biological fluids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In major economic growth theories, high saving rate gives rise to high level of output per capita. But in Keynesian economics, high saving rate causes low consumption and will lead the economy into recession. Students may ask, "For the well-being of an economy, should we save or should we consume?" In most of the intermediate macroeconomics textbooks, economic growth and Keynesian economics are taught in separate chapters; and in many cases, these chapters are not even successive to each other. There lacks a continuity between the long run and short run models. This paper builds a bridge between growth theories and Keynesian models. It links the Solow diagram and the IS-LM curves and depicts the short run and long run implications of a change in the saving rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In text categorization applications, class imbalance, which refers to an uneven data distribution where one class is represented by far more less instances than the others, is a commonly encountered problem. In such a situation, conventional classifiers tend to have a strong performance bias, which results in high accuracy rate on the majority class but very low rate on the minorities. An extreme strategy for unbalanced, learning is to discard the majority instances and apply one-class classification to the minority class. However, this could easily cause another type of bias, which increases the accuracy rate on minorities by sacrificing the majorities. This paper aims to investigate approaches that reduce these two types of performance bias and improve the reliability of discovered classification rules. Experimental results show that the inexact field learning method and parameter optimized one-class classifiers achieve more balanced performance than the standard approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment technique for metal alloys, with the great improvement of their fatigue, corrosion and wear resistance performance. Finite element method has been widely applied to simulate the LSP to provide the theoretically predictive assessment and optimally parametric design. In the current work, 3-D numerical modelling approaches, combining the explicit dynamic analysis, static equilibrium analysis algorithms and different plasticity models for the high strain rate exceeding 106s-1, are further developed. To verify the proposed methods, 3-D static and dynamic FEA of AA7075-T7351 rods subject to two-sided laser shock peening are performed using the FEA package–ABAQUS. The dynamic and residual stress fields, shock wave propagation and surface deformation of the treated metal from different material modelling approaches have a good agreement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The black bream Acanthopagrus butcheri recreational fishery is the largest estuarine fishery in Victoria. This fishery is managed through legal-minimum length and daily bag limits. The success of this management strategy requires a high survival rate for released fish. Deep-hooking is known to reduce the chance of fish survival after recreational capture and release. This study investigated the potential to reduce deep-hooking and the number of under-size A. butcheri caught by varying angling gear and techniques. Three sizes of long shank hook (small [size 8], medium [size 4] and large [size 1/0]) and two angling techniques (slack line and tight line) were tested for their deep-hooking rates and selectivity characteristics. Increasing the hook size from small to large decreased the likelihood of deep-hooking by 6.6 times (95% CI 2.3–16.3 times). Fishing with a tight line instead of a slack line decreased the chance of deep-hooking by almost 100% (95% CI 0.8–3.6). Fishing with a large hook instead of a small hook significantly (F = 6.71, df = 2, P = <0.001) increased the mean A. butcheri length, although this mean size increase was less than 1 cm. This study was able to identify angling gear and angling technique manipulations that reduced the rate of deep-hooking when targeting A. butcheri in Victorian estuaries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phytoplankton primary productivity of eleven irrigation reservoirs located in five river basins in Sri Lanka was determined on a single occasion together with light climate and nutrient concentrations. Although area-based gross primary productivity (1.43–11.65 g O2 m−2 d−1) falls within the range already established for tropical water bodies, net daily rate was negative in three water bodies. Light-saturated optimum rates were found in water bodies, with relatively high algal biomass, but photosynthetic efficiency or specific rates were higher in water bodies with low algal biomass, indicating nutrient limitation or physiological adaptation of phytoplankton. Concentrations of micronutrients and algal biomass in the reservoirs are largely altered by high flushing rate resulting from irrigation release. Underwater light climate and nutrient availability control the rate of photosynthesis and subsequent areabased primary production to a great extent. However, morpho-edephic index or euphotic algal biomass in the most productive stratum of the water column is not a good predictor of photosynthetic capacity or daily rate of primary production of these shallow tropical irrigation reservoirs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents an integrated model for computing the thermo-mechanical parameters (cross-sectional shape of workpiece, the pass-by-pass strain and strain rate and the temperature variation during rolling and cooling between inter-stands) and metallurgical parameters (recrystallisation behaviour and austenite grain size—AGS), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since 1970s.

The advantage of this model is that metallurgical and mechanical parameters are obtained simultaneously in a short computation time compared with other models. The model has been applied to a rod mill to predict the exit cross-sectional shape, area and AGS per pass by incorporating the equations for AGS evolution being used in strip rolling. At the finishing train of rod mills, the strain rates reach as high as 1000–3000 s−1 and the inter-pass times are around 10–60 ms.

The results show that the proposed model is an efficient tool for evaluating the effects of process-related parameters on product quality and dimensional tolerance of the products in rod (or bar) rolling. The results of the simulation demonstrated that the equation for AGS evolution being used in strip rolling might have limitations when applied directly to rod rolling at a high strain rate.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses some experimental results on the influence of grain refinement on the final mechanical properties of IF and microalloyed steels designed for auto-body components. It shows also some modeling approaches to understanding the dynamic behavior of fine-rained materials. The Zerilli–Armstrong (Z–A) and Khan–Huang–Liang (KHL) models for studied steels were implemented into FEM code in order to simulate the dynamic compression tests with different strain rates.