7 resultados para heuristic methods

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Kidney Exchange Problem (KEP) is an optimisation problem that was first discussed in Rapaport (1986) but has only more recently been the subject of much work by combinatorial optimisation re-searchers. This has been in parallel with its increased prevalence in the medical community. In the basic formulation of a KEP, each instance of the problem features a directed graph D = (V,A) . Each node i ∈ V represents an incompatible pair wherein the patient needs to trade kidneys with the patient of another incompatible pair. The goal is to find an optimal set of cycles such that as many patients as possible receive a transplant. The problem is further complicated by the imposition of a cycle-size constraint, usually considered to be 3 or 4. Kidney exchange programs around the world implement different algorithms to solve the allocation problem by matching up kidneys from potential donors to patients. In some systems all transplants are considered equally desirable, whereas in others, ranking criteria such as the age of the patient or distance they will need to travel are applied, hence the multi-criteria nature of the KEP. To address the multi-criteria aspect of the KEP, in this paper we propose a two-stage approach for the kidney exchange optimisation problem. In the first stage the goal is to find the optimal number of exchanges, and in the second stage the goal is to maximise the weighted sum of the kidney matches, subject to the added constraint that the number of exchanges must remain optimal. The idea can potentially be extended to multiple-objectives, by repeating the process in multiple runs. In our preliminary numerical experiments, we first find the maximum number of kidney matches by using an existing open source exact algorithm of Anderson et al. (2015). The solution will then be used as an initial solution for the stage two optimisation problem, wherein two heuristic methods, steepest ascent and random ascent, are implemented in obtaining good quality solutions to the objective of maximizing total weight of exchanges. The neighbourhood is obtained by two-swaps. It is our intention in the future to implement a varying neighbourhood scheme within the same two heuristic framework, or within other meta-heuristic framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concept learning of text documents can be viewed as the problem of acquiring the definition of a general category of documents. To definite the category of a text document, the Conjunctive of keywords is usually be used. These keywords should be fewer and comprehensible. A naïve method is enumerating all combinations of keywords to extract suitable ones. However, because of the enormous number of keyword combinations, it is impossible to extract the most relevant keywords to describe the categories of documents by enumerating all possible combinations of keywords. Many heuristic methods are proposed, such as GA-base, immune based algorithm. In this work, we introduce pruning power technique and propose a robust enumeration-based concept learning algorithm. Experimental results show that the rules produce by our approach has more comprehensible and simplicity than by other methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coverage is the range that covers only positive samples in attribute (or feature) space. Finding coverage is the kernel problem in induction algorithms because of the fact that coverage can be used as rules to describe positive samples. To reflect the characteristic of training samples, it is desirable that the large coverage that cover more positive samples. However, it is difficult to find large coverage, because the attribute space is usually very high dimensionality. Many heuristic methods such as ID3, AQ and CN2 have been proposed to find large coverage. A robust algorithm also has been proposed to find the largest coverage, but the complexities of time and space are costly when the dimensionality becomes high. To overcome this drawback, this paper proposes an algorithm that adopts incremental feature combinations to effectively find the largest coverage. In this algorithm, the irrelevant coverage can be pruned away at early stages because potentially large coverage can be found earlier. Experiments show that the space and time needed to find the largest coverage has been significantly reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All rights reserved. In this paper, we propose and study a unified mixed-integer programming model that simultaneously optimizes fluence weights and multi-leaf collimator (MLC) apertures in the treatment planning optimization of VMAT, Tomotherapy, and CyberKnife. The contribution of our model is threefold: (i) Our model optimizes the fluence and MLC apertures simultaneously for a given set of control points. (ii) Our model can incorporate all volume limits or dose upper bounds for organs at risk (OAR) and dose lower bound limits for planning target volumes (PTV) as hard constraints, but it can also relax either of these constraint sets in a Lagrangian fashion and keep the other set as hard constraints. (iii) For faster solutions, we propose several heuristic methods based on the MIP model, as well as a meta-heuristic approach. The meta-heuristic is very efficient in practice, being able to generate dose- and machinery-feasible solutions for problem instances of clinical scale, e.g., obtaining feasible treatment plans to cases with 180 control points, 6750 sample voxels and 18,000 beamlets in 470 seconds, or cases with 72 control points, 8000 sample voxels and 28,800 beamlets in 352 seconds. With discretization and down-sampling of voxels, our method is capable of tackling a treatment field of 8000-64,000cm3, depending on the ratio of critical structure versus unspecified tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an algorithm used to solve a carton to pallet packing problem in a drink manufacturing firm. The aim was to determine the cartons loading sequence and the number pallets required, prior to dispatch by truck. The algorithm consists of a series of nine parts to solve this industrial application problem. The pallet loading solution relatively computationally efficient and reduces the number pallets required, compared to other 'trail and error' or manual spreadsheet calculation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A grid computing system consists of a group of programs and resources that are spread across machines in the grid. A grid system has a dynamic environment and decentralized distributed resources, so it is important to provide efficient scheduling for applications. Task scheduling is an NP-hard problem and deterministic algorithms are inadequate and heuristic algorithms such as particle swarm optimization (PSO) are needed to solve the problem. PSO is a simple parallel algorithm that can be applied in different ways to resolve optimization problems. PSO searches the problem space globally and needs to be combined with other methods to search locally as well. In this paper, we propose a hybrid-scheduling algorithm to solve the independent task- scheduling problem in grid computing. We have combined PSO with the gravitational emulation local search (GELS) algorithm to form a new method, PSO–GELS. Our experimental results demonstrate the effectiveness of PSO–GELS compared to other algorithms.