3 resultados para heterologous expression

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second generation biofuel development is increasingly reliant on the recombinant expression of cellulases. Designing or identifying successful expression systems is thus of preeminent importance to industrial progress in the field. Recombinant production of cellulases has been performed using a wide range of expression systems in bacteria, yeasts and plants. In a number of these systems, particularly when using bacteria and plants, significant challenges have been experienced in expressing full-length proteins or proteins at high yield. Further difficulties have been encountered in designing recombinant systems for surface-display of cellulases and for use in consolidated bioprocessing in bacteria and yeast. For establishing cellulase expression in plants, various strategies are utilized to overcome problems, such as the auto-hydrolysis of developing plant cell walls. In this review, we investigate the major challenges, as well as the major advances made to date in the recombinant expression of cellulases across the commonly used bacterial, plant and yeast systems. We review some of the critical aspects to be considered for industrial-scale cellulase production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae RAD1 and human XPF genes encode a subunit of a nucleotide excision repair endonuclease that also is implicated in some forms of homologous recombination. An Arabidopsis thaliana gene (AtRAD1) encoding the orthologous plant protein has been identified recently. Here we report the isolation of three structurally distinct AtRAD1 cDNAs from A. thaliana leaf tissue RNA. One of the isolates (AtRAD1-1) corresponds to the cDNA previously shown to encode the full-length AtRad1 protein, whereas the other two (AtRAD1-2, AtRAD1-3) differ slightly in size due to variations at the 5′ end of exon 6 or the 3′ end of exon 7, respectively. The sequence differences argue that these cDNAs were probably templated by mRNAs generated via alternative splicing. Diagnostic polymerase chain reaction pointed to the presence of the AtRAD1-1 and AtRAD1-2 but not AtRAD1-3 transcripts in bud and root tissue, and to a fourth transcript (AtRAD1-4), having both alterations identified in AtRAD1-2 and AtRAD1-3, in root tissue. However, the low frequency of detection of AtRAD1-3 and AtRAD1-4 makes the significance of these tissue-specific patterns unclear. The predicted AtRad1-2, AtRad1-3 and AtRad1-4 proteins lack part of the region likely required for endonuclease complex formation. Expression of AtRAD1-2 and AtRAD1-3 in a yeast rad1 mutant did not complement the sensitivity to ultraviolet radiation or the recombination defect associated with the rad1 mutation. These results suggest that alternative splicing may modulate the levels of functional AtRad1 protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.