41 resultados para habitat selection

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 2000 and 2002 the home range, habitat selection and diet of foxes were examined in the Dandenong Creek Valley, Melbourne, Australia. The mean home range was 44.6 ha (range 19.2–152.6 ha). A significant selection towards blackberry and gorse used as diurnal shelter was found during the day with an active avoidance of less structurally complex vegetation types. Although there was obvious selection of certain habitats, the diet of the foxes was highly general and opportunistic and thus offers little potential as a factor to manipulate in order to reduce fox abundance. Given the strong preference for blackberry and gorse as a shelter resource, a habitat-manipulation strategy is suggested whereby patches of blackberry and gorse are removed and replaced with less structurally complex vegetation. Such a strategy has the potential to influence the density of foxes in semi-urban riparian environments such as those discussed in this study.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Numerous studies have determined the foraging areas of marine apex predators and investigated their relationship to oceanographic features. Most of these, however, have concentrated on surface-feeding seabirds or epipelagic-foraging marine mammals and there is little information on habitat selection in benthic divers.

2. Satellite telemetry was used during the winters of 2001-2003 to determine the foraging areas of 48 female Australian fur seals (Arctocephalus pusillus doriferus) from four breeding sites in northern Bass Strait whose colonies together represent > 80% of the total species population.

3. All individuals foraged over the shallow continental shelf of Bass Strait supporting earlier studies that suggested the species is an exclusively benthic forager. Individual females showed a high degree of foraging site-fidelity and several foraging 'hot spot' areas could be identified.

4. Analysis of habitat use indicated that individuals selected areas with depths of 60-80 m significantly more (λ = 0.216, P<0.001) than any other bathymetric class. There was also evidence for foraging areas being influenced by SST, with individuals selecting regions of 16.0-16.8 C SST (λ = 0.008, P<0.01), but not surface chlorophyll-a concentration (P> 0.05).

5. Temporal analysis of at-sea movements indicated, due to their primarily benthic foraging mode, the areas frequented by female Australian fur seals did not overlap substantially with areas targeted by commercial fisheries. An exception to this was in far eastern Bass Strait where the Otter Trawl component of the Commonwealth Trawl Sector is highly active over the continental shelf and encompasses the areas frequented by females from The Skerries colony.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the foraging areas of top marine predators and the factors influencing them is central to understanding how their populations respond to environmental variability. While there is a large body of literature documenting the association of air-breathing marine vertebrates with areas of high marine productivity, there is relatively little information for species restricted to near-shore or continental-shelf areas. Differences in foraging range and diving behaviour of the little penguin Eudyptula minor were examined from 3 breeding colonies (Rabbit Island, Kanowna Island and Phillip Island) in central northern Bass Strait, southeast Australia, during the chick-guard stage using electronic tags (platform terminal transmitters, PTTs, and time-depth recorders, TDRs). Although there were large overall differences between individuals, the mean maximum foraging range (16.9 to 19.8 km) and mean total distance travelled (41.8 to 48.0 km) were similar between the 3 colonies, despite different bathymetric environments. Individuals from all 3 colonies selected foraging habitats within a narrow sea surface temperature (SST) range (16.0 to 16.4°C). While there were significant differences in mean dive depths (5.4 to 10.9 m) and mean durations (13.2 to 28.6 s) between the different colonies, the mean diving effort (vertical distance travelled: 936.3 to 964.3 m h–1) was similar. These findings suggest little penguins from the 3 colonies employ relatively similar foraging efforts yet are plastic in their foraging behaviours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue whales Balaenoptera musculus aggregate to feed in a regional upwelling system during November–May between the Great Australian Bight (GAB) and Bass Strait. We analysed sightings from aerial surveys over 6 upwelling seasons (2001–02 to 2006–07) to assess within-season patterns of blue whale habitat selection, distribution, and relative abundance. Habitat variables were modelled using a general linear model (GLM) that ranked sea surface temperature (SST) and sea surface chlorophyll (SSC) of equal importance, followed by depth, distance to shore, SSC gradient, distance to shelf break, and SST gradient. Further discrimination by hierarchical partitioning indicated that SST accounted for 84.4% of variation in blue whale presence explained by the model, and that probability of sightings increased with increasing SST. The large study area was resolved into 3 zones showing diversity of habitat from the shallow narrow shelf and associated surface upwelling of the central zone, to the relatively deep upper slope waters, broad shelf and variable upwelling of the western zone, and the intermediate features of the eastern zone. Density kernel estimation showed a trend in distribution from the west during November–December, spreading south-eastward along the shelf throughout the central and eastern zones during January–April, with the central zone most consistently utilised. Encounter rates in central and eastern zones peaked in February, coinciding with peak upwelling intensity and primary productivity. Blue whales avoided inshore upwelling centres, selecting SST ~1°C cooler than remotely sensed ambient SST. Whales selected significantly higher SSC in the central and eastern zones than the western zone, where relative abundance was extremely variable. Most animals departed from the feeding ground by late April.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tried to unravel the possible links between the skewed predation risk in Uca tangeri (where large individuals are more at risk from avian predators) and size-dependent changes in the physiology and habitat choice of this fiddler crab species. Over a transect running from low to high in the tidal zone of a beach in Mauritania, the temperature profile at various depths in the substrate, the water-table level of seep water, salt concentration of seep water, depth of the aerobic level, operative temperatures on the surface, and size distribution of crabs were assessed. In addition, resting metabolic rates, Q10 and thermal and starvation tolerances were estimated. Going from low to high in the tidal zone, crab size and burrow depth increased. At the preferred burrowing depth, microclimatological conditions appeared to be equally favourable at all sites. At the surface, conditions were more favourable low in the tidal zone, where also food availability is sufficient to enable small crabs to forage in the vicinity of their burrows. Large crabs have higher energy requirements and are thereby forced to forage in flocks low in the tidal zone where food is probably more abundant. Low in the tidal zone, digging deeply is impossible as the aerobic layer is rather thin. Large crabs prefer living high in the tidal zone as (1) deep burrows ensure better protection against predators, (2) more time is available for digging holes and (3) the substrate is better suited for reproduction. Energy reserves in late summer ensured an average of 34 days of survival. It is argued that the allotment of energy to growth must be considerable even in reproducing animals; the rewards of growth being the disproportional increase in reproductive output with size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The food resource hypothesis of breeding habitat selection in beach-nesting birds suggests that birds breed at sites with more prey to meet the increased energetic requirements associated with breeding. We compare prey resources using pitfall traps and core samples at breeding sites and absence sites of the eastern population of hooded plover, Thinornis rubricollis rubricollis, which, in this part of its range, is a threatened obligate beach bird. Breeding sites had higher abundances, equivalent species richness, and different assemblages of invertebrate prey compared with absence sites. Assemblages at breeding sites were characterised by more isopods, and fewer beetles of the family Phycosecidae. Breeding habitat selection by plovers appears to be associated with selection for sites with more food, and any process that degrades food resources at a site (e.g. kelp harvesting or marine pollution events) may reduce the likelihood of occupancy of that site by breeding birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine-scale differences in behaviour and habitat use have important ecological implications, but have rarely been examined in marine gastropods. We used tri-axial accelerometer loggers to estimate activity levels and movement patterns of the juvenile queen conch Lobatus gigas (n = 11) in 2 habitat types in Eleuthera, The Bahamas. In 2 manipulations in nearshore areas, queen conchs were equipped with accelerometers and released in adjacent coral rubble or seagrass habitats. Queen conchs were located approximately every 6 h during daylight by snorkeling, to measure individual differences in linear distance moved, and after 24 h they were relocated to an alternate habitat (24 h in each habitat). We found significant inter-individual variability in activity levels, but more consistent levels of activity between the 2 habitat types within individual queen conchs. Four (36%) of the individuals placed in seagrass moved back to the adjacent coral rubble habitat, suggesting selectivity for coral rubble. Individuals showed variable behavioural responses when relocated to the less preferable seagrass habitat, which may be related to differing stress-coping styles. Our results suggest that behavioural variability between individuals may be an important factor driving movement and habitat use in queen conch and, potentially, their susceptibility to human stressors. This study provides evidence of diverse behavioural (activity) patterns and habitat selectivity in a marine gastropod and highlights the utility of accelero meter biologgers for continuously monitoring animal behaviour in the wild.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phytophthora cinnamomi (Cinnamon fungus) is a pathogenic soil fungus which infects plant communities along the south-eastern coast of Australia, and the south-western corner of Western Australia. The symptoms of this disease include chlorosis, death of branches (ie. ‘dieback’), retarded growth and the eventual death of infected plants. This leads to devastating effects upon plant communities by altering both the structural and floristic characteristics of these communities. Small mammal species are dependent on specific features of their habitat such as vegetation structure and floristics. This thesis investigated alterations to the habitat of the insectivorous marsupial mouse, Antechinus stuartii, due to the presence of P. cinnamomi. The study was undertaken in an area of an open forest in the Brisbane Ranges, Victoria. Significant changes were found in both the floristic composition and structure of the vegetation at study sites infected with P, cinnamomi, compared to uninfected sites. The habitat utilization by A. stuartii of uninfected and infected vegetation was investigated using live trapping and radio-telemetric techniques. Capture rates were higher at sites uninfected by P. cinnamomi, and both male and females selected areas free from infection. Home range areas of males were significantly larger than those of females as assessed by telemetry. Both sexes spent a high proportion of time in areas dominated by Xanthorrhoea australis (Austral grass tree). There were significant relationships between the abundance of A. stuartii and the denseness of vegetation above 1 metre in height, and in particular, the proportion of cover afforded by X. australis. There were no significant differences in the cover of Eucalyptus spp. between uninfected and infected sites, but there were significantly more nest hollows in infected areas. The abundance of invertebrates was examined using pitfall traps. There were no significant differences in the abundance of the larger invertebrate taxa at infected and uninfected sites, but higher abundances of some micro-invertebrate groups in infected areas were recorded. The most likely factors considered to be influential in the habitat selection of A. stuartii were vegetation structure, and the presence of X. australis. To assess whether these factors were important the leaves of X. australis were removed with a brushcutter, to mimic the early effects of infection with P. cinnamomi. Animals did not respond to the alteration of vegetation structure in the short term (3-4 days). Longer-term experiments are required to assess the habitat utilization of A. stuartii at different periods following habitat manipulation. The implications of the presence of P. cinnamomi on the conservation of fauna are discussed. The destructive nature of the pathogen, and the slow rate of recovery from the disease, means that P. cinnamomi can be considered a threatening process to plant communities and the fauna that reside within that habitat. Future management of this disease within natural areas must therefore be cognisant of the potential of P. cinnamomi to significantly affect faunal as well as vegetative communities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diverse species assemblages are often associated with a diversity of habitat structures. Sedimentary systems seem to be no exception, as within sedimentary systems benthic species diversity within a sample point appears to correlate with sediment grain size complexity. However, it remains to be shown whether total benthic species diversity relates to a system’s sediment heterogeneity across multiple systems. In the present paper we examined whether bivalve diversity is associated with: (1) sediment heterogeneity across systems and (2) sediment grain size complexity within systems, at 9 temperate and tropical tidal flat systems. Although bivalve life-history strategies, like post-settlement habitat selection, might suggest that sediment heterogeneity should be important for bivalve species, bivalve diversity and sediment heterogeneity were not associated across systems. Interestingly, the association between total benthic diversity and sediment heterogeneity was also not significant, suggesting that changing species composition across systems does not account for the lack of a correlation between bivalve diversity and sediment heterogeneity. Instead of habitat differentiation, bivalve diversity within a sample point was highest in ‘complex’ fine-grained sediments and bivalve distributions showed a large degree of distributional overlap in all systems. The results of this study at both smaller and larger spatial scales suggest that coexistence between bivalve species in diverse tidal flats is not associated with increased sediment heterogeneity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conspecific nesting density affects many aspects of breeding biology, as well as habitat selection decisions. However, the large variations in breeding density observed in many species are yet to be fully explained. Here, we investigated the settlement patterns in a colonial species with variable breeding density and where resource distribution could be manipulated. The zebra finch, Taeniopygia guttata, is a classic avian model in evolutionary biology but we know surprisingly very little about nest site selection strategies and nesting densities in this species, and in fact, in nomadic species in general. Yet, important determinants of habitat selection strategies, including temporal predictability and breeding synchrony, are likely to be different in nomadic species than in the non-nomadic species studied to date. Here, we manipulated the distribution of nesting sites (by providing nest boxes) and food patches (feeders) to test four non-exclusive habitat selection hypotheses that could lead to nest aggregation: 1) attraction to resources, 2) attraction to breeding conspecifics, and 3) attraction to successful conspecifics and 4) use of private information (i.e. own reproductive success on a site). We found that wild zebra finches used conspecific presence and possibly reproductive success, to make decisions over where to locate their nests, but did not aggregate around water or food within the study areas. Moreover, there was a high degree of inter-individual variation in nesting density preference. We discuss the significance of our results for habitat selection strategy in nomadic species and with respect to the differential selection pressures that individuals breeding at different densities may experience.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 BACKGROUND: Interactions between wildlife and humans are increasing. Urban animals are often less wary of humans than their non-urban counterparts, which could be explained by habituation, adaptation or local site selection. Under local site selection, individuals that are less tolerant of humans are less likely to settle in urban areas. However, there is little evidence for such temperament-based site selection, and even less is known about its underlying genetic basis. We tested whether site selection in urban and non-urban habitats by black swans (Cygnus atratus) was associated with polymorphisms in two genes linked to fear in animals, the dopamine receptor D4 (DRD4) and serotonin transporter (SERT) genes.

RESULTS: Wariness in swans was highly repeatable between disturbance events (repeatability = 0.61) and non-urban swans initiated escape from humans earlier than urban swans. We found no inter-individual variation in the SERT gene, but identified five DRD4 genotypes and an association between DRD4 genotype and wariness. Individuals possessing the most common DRD4 genotype were less wary than individuals possessing rarer genotypes. As predicted by the local site selection hypothesis, genotypes associated with wary behaviour were over three times more frequent at the non-urban site. This resulted in moderate population differentiation at DRD4 (FST = 0.080), despite the sites being separated by only 30 km, a short distance for this highly-mobile species. Low population differentiation at neutrally-selected microsatellite loci and the likely occasional migration of swans between the populations reduces the likelihood of local site adaptations.

CONCLUSION: Our results suggest that wariness in swans is partly genetically-determined and that wary swans settle in less-disturbed areas. More generally, our findings suggest that site-specific management strategies may be necessary that consider the temperament of local animals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Few habitat models are available for widespread, obligate, high-energy sandy shore vertebrates, such as the Eastern Hooded Plover Thinornis cucullatus cucullatus. We examined habitat attributes which determined the difference between sites where plovers breed and randomly-selected absence sites (determined from long-term systematic monitoring). A variety of habitat variables were derived from aerial photography and bathymetric and terrestrial Light Detection And Ranging (LiDAR) data. Logistic regression against eight candidate variables, in a model selection framework, revealed considerable support for four variables with respect to explaining the presence of breeding territories. In particular, the amount of unvegetated dune and foredune which was unvegetated, and the amount of intertidal and sub-tidal reef were positively associated with the presence of breeding territories. Thus, plovers apparently select certain habitat in which to breed, involving sub-tidal, intertidal and supra-tidal habitat elements. The model also helps explain the virtual absence of breeding plovers from long sections of superficially suitable habitat, such as the fourth longest continuous beach in the world.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Feral cats (Felis catus) have a wide global distribution and cause significant damage to native fauna. Reducing their impacts requires an understanding of how they use habitat and which parts of the landscape should be the focus of management. We reviewed 27 experimental and observational studies conducted around the world over the last 35 years that aimed to examine habitat use by feral and unowned cats. Our aims were to: (1) summarise the current body of literature on habitat use by feral and unowned cats in the context of applicable ecological theory (i.e. habitat selection, foraging theory); (2) develop testable hypotheses to help fill important knowledge gaps in the current body of knowledge on this topic; and (3) build a conceptual framework that will guide the activities of researchers and managers in reducing feral cat impacts. We found that feral cats exploit a diverse range of habitats including arid deserts, shrublands and grasslands, fragmented agricultural landscapes, urban areas, glacial valleys, equatorial to sub-Antarctic islands and a range of forest and woodland types. Factors invoked to explain habitat use by cats included prey availability, predation/competition, shelter availability and human resource subsidies, but the strength of evidence used to support these assertions was low, with most studies being observational or correlative.Wetherefore provide a list of key directions that will assist conservation managers and researchers in better understanding and ameliorating the impact of feral cats at a scale appropriate for useful management and research. Future studies will benefit from employing an experimental approach and collecting data on the relative abundance and activity of prey and other predators. This might include landscape-scale experiments where the densities of predators, prey or competitors are manipulated and then the response in cat habitat use is measured. Effective management of feral cat populations could target high-use areas, such as linear features and structurally complex habitat. Since our review shows often-divergent outcomes in the use of the same habitat components and vegetation types worldwide, local knowledge and active monitoring of management actions is essential when deciding on control programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sexual segregation in habitat use is widely reported in many taxa and can profoundly influence the distribution and behaviour of animals. However, our knowledge of the mechanisms driving sexual segregation is still in its infancy (particularly in marine taxa) and the influence of extrinsic factors in mediating the expression of sex differences in foraging behaviour is underdeveloped. Here, we combine data from biologging tags, with stable isotope analysis of vibrissae, to assess sexual segregation in southern sea lions (SSL) (Otaria flavescens) breeding at the Falkland Islands in the South Atlantic. We found evidence to support segregation, most notably in δ13C and δ15N values. However, in spite of extreme sexual size dimorphism and differing constraints related to female-only parental care, adult male and adult female SSL overlapped considerably in isotopic niches and foraging area, and shared similar foraging trip characteristics (such as distance and duration). This is in contrast to SSL breeding in Argentina, where prior studies report sexual differences in foraging locations and foraging trip characteristics. We posit that sexual segregation in SSL is influenced by habitat availability (defined here as the width of the Patagonian Shelf) and individual foraging preferences, rather than commonly invoked individual-based limiting factors per se.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies examining recruitment processes for soft-sediment macroinvertebrate fauna in intermittent estuaries are rare and most studies of active habitat selection have been tested in the laboratory rather than the field. The present field study examined whether recruitment of the infaunal bivalve Soletellina alba was influenced by water depth and sediment particle size in the intermittent Hopkins River estuary, southern Australia. The number of recruits in sediment trays differed between water depths, but active habitat selection was not evident across treatments of varying sediment particle size. The use of sediments with varying particle sizes also provided an opportunity to identify potential discontinuities in body-size distributions of recruits associated with varying habitat architecture. The length (mm) of recruits was converted to the same scale used to express sediment particle size (i.e. phi units: phi = − log2 of sediment particle size). The size of recruits differed across water depths, but did not differ across treatments with fine (phi = 3) versus coarse (phi = 1) sediment, and no relationships were apparent between bivalve size and sediments consisting of varying particle size. These patterns of recruitment do not correspond with the distribution of adult S. alba within the Hopkins River estuary. Previous sampling has shown that abundances of juvenile and adult S. alba are variable across time, site and water depth, but are often greater at the deeper water depth (1.05 m below the Australian Height Datum). However, recruitment during the present study was greatest at the shallower water depth (0.05 m below AHD), and the apparent absence of active habitat selection suggests that the distribution of adults is unlikely to be attributable to differences in recruitment associated with sediments of varying particle size.