10 resultados para graph structure

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the task of time-separated aerial image registration. The ability to solve this problem accurately and reliably is important for a variety of subsequent image understanding applications. The principal challenge lies in the extent and nature of transient appearance variation that a land area can undergo, such as that caused by the change under illumination conditions, seasonal variations, or the occlusion by non-persistent objects (people, cars). Our work introduces several major novelties (i) unlike previous work on aerial image registration, we approach the problem using a set-based paradigm; (ii) we show how image space local, pair-wise constraints can be used to enforce a globally good registration using a constraints graph structure; (iii) we show how a simple holistic representation derived from raw aerial images can be used as a basic building block of the constraints graph in a manner which achieves both high registration accuracy and speed; (iv) lastly, we introduce a new and, to the best of our knowledge, the only data corpus suitable for the evaluation of set-based aerial image registration algorithms. Using this data set, we demonstrate (i) that the proposed method outperforms the state-of-the-art for pair-wise registration already, achieving greater accuracy and reliability, while at the same time reducing the computational cost of the task and (ii) that the increase in the number of available images in a set consistently reduces the average registration error, with a major difference already for a single additional image.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the task of time separated aerial image registration. The ability to solve this problem accurately and reliably is important for a variety of subsequent image understanding applications. The principal challenge lies in the extent and nature of transient appearance variation that a land area can undergo, such as that caused by the change in illumination conditions, seasonal variations, or the occlusion by non-persistent objects (people, cars). Our work introduces several novelties: (i) unlike all previous work on aerial image registration, we approach the problem using a set-based paradigm; (ii) we show how local, pairwise constraints can be used to enforce a globally good registration using a constraints graph structure; (iii) we show how a simple holistic representation derived from raw aerial images can be used as a basic building block of the constraints graph in a manner which achieves both high registration accuracy and speed. We demonstrate: (i) that the proposed method outperforms the state-of-the-art for pair-wise registration already, achieving greater accuracy and reliability, while at the same time reducing the computational cost of the task; and (ii) that the increase in the number of available images in a set consistently reduces the average registration error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graph-based anomaly detection plays a vital role in various application domains such as network intrusion detection, social network analysis and road traffic monitoring. Although these evolving networks impose a curse of dimensionality on the learning models, they usually contain structural properties that anomaly detection schemes can exploit. The major challenge is finding a feature extraction technique that preserves graph structure while balancing the accuracy of the model against its scalability. We propose the use of a scalable technique known as random projection as a method for structure aware embedding, which extracts relational properties of the network, and present an analytical proof of this claim. We also analyze the effect of embedding on the accuracy of one-class support vector machines for anomaly detection on real and synthetic datasets. We demonstrate that the embedding can be effective in terms of scalability without detrimental influence on the accuracy of the learned model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “external structure” in an object oriented system refers here to the  graphs of objects and classes. The class structure graph or class model is derived from the object structure graph or object model, and in this operation structural information is lost, or never made explicit. Although object oriented programming languages capture the class model as declarations,  contradictory assumptions about object model properties may be made introducing faults into the design. Consistent assumptions about the object model can be specified in the code using assertions such as Eiffel’s  invariants, preconditions and postconditions. Three examples specifying the external structure are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the primary substances in a living organism, protein defines the character of each cell by interacting with the cellular environment to promote the cell’s growth and function [1]. Previous studies on proteomics indicate that the functions of different proteins could be assigned based upon protein structures [2,3]. The knowledge on protein structures gives us an overview of protein fold space and is helpful for the understanding of the evolutionary principles behind structure. By observing the architectures and topologies of the protein families, biological processes can be investigated more directly with much higher resolution and finer detail. For this reason, the analysis of protein, its structure and the interaction with the other materials is emerging as an important problem in bioinformatics. However, the determination of protein structures is experimentally expensive and time consuming, this makes scientists largely dependent on sequence rather than more general structure to infer the function of the protein at the present time. For this reason, data mining technology is introduced into this area to provide more efficient data processing and knowledge discovery approaches.

Unlike many data mining applications which lack available data, the protein structure determination problem and its interaction study, on the contrary, could utilize a vast amount of biologically relevant information on protein and its interaction, such as the protein data bank (PDB) [4], the structural classification of proteins (SCOP) databases [5], CATH databases [6], UniProt [7], and others. The difficulty of predicting protein structures, specially its 3D structures, and the interactions between proteins as shown in Figure 6.1, lies in the computational complexity of the data. Although a large number of approaches have been developed to determine the protein structures such as ab initio modelling [8], homology modelling [9] and threading [10], more efficient and reliable methods are still greatly needed.

In this chapter, we will introduce a state-of-the-art data mining technique, graph mining, which is good at defining and discovering interesting structural patterns in graphical data sets, and take advantage of its expressive power to study protein structures, including protein structure prediction and comparison, and protein-protein interaction (PPI). The current graph pattern mining methods will be described, and typical algorithms will be presented, together with their applications in the protein structure analysis.

The rest of the chapter is organized as follows: Section 6.2 will give a brief introduction of the fundamental knowledge of protein, the publicly accessible protein data resources and the current research status of protein analysis; in Section 6.3, we will pay attention to one of the state-of-the-art data mining methods, graph mining; then Section 6.4 surveys several existing work for protein structure analysis using advanced graph mining methods in the recent decade; finally, in Section 6.5, a conclusion with potential further work will be summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the problem of learning the structure of a Bayes net (BN) in the theoretical framework of Gold’s learning paradigm. Bayes nets are one of the most prominent formalisms for knowledge representation and probabilistic and causal reasoning. We follow constraint-based approaches to learning Bayes net structure, where learning is based on observed conditional dependencies between variables of interest (e.g., “X is dependent on Y given any assignment to variable Z”). Applying learning criteria in this model leads to the following results. (1) The mind change complexity of identifying a Bayes net graph over variables V from dependency data is |V| 2 , the maximum number of edges. (2) There is a unique fastest mind-change optimal Bayes net learner; convergence speed is evaluated using Gold’s dominance notion of “uniformly faster convergence”. This learner conjectures a graph if it is the unique Bayes net pattern that satisfies the observed dependencies with a minimum number of edges, and outputs “no guess” otherwise. Therefore we are using standard learning criteria to define a natural and novel Bayes net learning algorithm. We investigate the complexity of computing the output of the fastest mind-change optimal learner, and show that this problem is NP-hard (assuming P = RP). To our knowledge this is the first NP-hardness result concerning the existence of a uniquely optimal Bayes net structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new type of discriminative subgraph pattern called breaker emerging subgraph pattern by introducing three constraints and two new concepts: base and breaker. A breaker emerging sub-graph pattern consists of three subpatterns: a con-strained emerging subgraph pattern, a set of bases and a set of breakers. An efficient approach is pro-posed for the discovery of top-k breaker emerging sub-graph patterns from graph datasets. Experimental re-sults show that the approach is capable of efficiently discovering top-k breaker emerging subgraph patterns from given datasets, is more efficient than two previ-ous methods for mining discriminative subgraph pat-terns. The discovered top-k breaker emerging sub-graph patterns are more informative, more discrim-inative, more accurate and more compact than the minimal distinguishing subgraph patterns. The top-k breaker emerging patterns are more useful for sub-structure analysis, such as molecular fragment analy-sis. © 2009, Australian Computer Society, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe a novel framework for the discovery of the topical content of a data corpus, and the tracking of its complex structural changes across the temporal dimension. In contrast to previous work our model does not impose a prior on the rate at which documents are added to the corpus nor does it adopt the Markovian assumption which overly restricts the type of changes that the model can capture. Our key technical contribution is a framework based on (i) discretization of time into epochs, (ii) epoch-wise topic discovery using a hierarchical Dirichlet process-based model, and (iii) a temporal similarity graph which allows for the modelling of complex topic changes: emergence and disappearance, evolution, splitting and merging. The power of the proposed framework is demonstrated on the medical literature corpus concerned with the autism spectrum disorder (ASD) - an increasingly important research subject of significant social and healthcare importance. In addition to the collected ASD literature corpus which we made freely available, our contributions also include two free online tools we built as aids to ASD researchers. These can be used for semantically meaningful navigation and searching, as well as knowledge discovery from this large and rapidly growing corpus of literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the need for social network data publishing continues to increase, how to preserve the privacy of the social network data before publishing is becoming an important and challenging issue. A common approach to address this issue is through anonymization of the social network structure. The problem with altering the structure of the links relationship in social network data is how to balance between the gain of privacy and the loss of information (data utility). In this paper, we address this problem. We propose a utility-aware social network graph anonymization. The approach is based on a new metric that calculates the utility impact of social network link modification. The metric utilizes the shortest path length and the neighborhood overlap as the utility value. The value is then used as a weight factor in preserving structural integrity in the social network graph anonymization. For any modification made to the social network links, the proposed approach guarantees that the distance between vertices in the modified social network stays as close as the original social network graph prior to the modification. Experimental evaluation shows that the proposed metric improves the utility preservation as compared to the number-of-change metric.