20 resultados para glutamic acid

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Elsevier B.V. All rights reserved. A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A reliable description of ion pair interactions for biological systems, particularly those involving polyatomic ions such as carboxylate and divalent ions such as Ca2+, using biomolecular force-fields is essential for making useful predictions for a range of protein functions. In particular, the interaction of divalent ions with the double carboxylate group present in γ-carboxyglutamic acid (Gla), relevant to the function of many proteins, is relatively understudied using biomolecular force-fields. Using force-field based metadynamics simulations to predict the free energy of binding between Ca2+ and the carboxylate group in liquid water, we show that a widely-used biomolecular force-field, CHARMM22∗, substantially over-estimates the binding strength between Ca2+ and the side-chains of both glutamic acid (Glu) and Gla, compared with experimental data obtained for the analogous systems of aqueous calcium-acetate and calcium-malonate. To correct for this, we propose and test a range of modifications to the σ value of the heteroatomic Lennard-Jones interaction between Ca2+ and the oxygen of the carboxylate group. Our revised parameter set can recover the same three association modes of this aqueous ion pair as the standard parameter set, and yields free energies of binding for the carboxylate-Ca2+ interaction in good agreement with experimental data. The revised parameter set recovers other structural properties of the ion pair in agreement with the standard CHARMM22∗ parameter set.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The changes in proximate composition, amino acid (total and free) and fatty acid content of artificially propagated trout cod, Maccullochella macquariensis larvae from five mothers hatched, weaned and reared separately, each in two groups, one fed with Artemia naupli and the other starved, for 15 days (after yolk resorption), are presented. There was no significant change in the proximate composition of fed larvae with devlopment, but in starved larvae the protein (linearly) and lipid (curvi-linearly) content decreased significantly as starvation progressed. The essential amino acids (EAA) and non- essential amino acids (NEAA) found in highest amounts in trout cod larvae were lysine, leucine, threonine and arginine, and alanine, serine and glutamic acid, respectively. In fed larvae the total amino acid (TAA), TEAA and TNEAA content did not vary significantly as development progressed. In starved larvae the TAA, EAA and NEAA content, as well as all the individual amino acids decreased significantly (P<0.05) from the levels in day of hatch and/or yolk-sac resorbed larvae. The greatest decrease occurred in the TEAA content (7.38±0.76 at day of hatch to 1.96±0.09 15 day starved in μmoles larva–1; approximately a 74% decrease), whereas the decrease in TNEAA was about 38%. Unlike in the case of TAA distinct changes in the free amino acid (FAA) pool were discernible, from day of hatch and onwards, in both fed and starved trout cod larvae. In both groups of larvae the most noticeable being the decrease of % FEAA in TFAA, but not the % FAA in TAA. Four fatty acids together, accounted for more than 50% of the total in each of the major fatty acid categories in all larvae sampled; 16: 0, 18:1n-9, 22: 6n-3 and 20: 4n-6, amongst saturates, monoenes, n-3 PUFA and n-6 PUFA, respectively. Twelve fatty acids either decreased (14: 0, 16: 1n-7, 20: 1n-9, 20: 4n-6, 20: 5n-3, 22: 5n-3 and 22: 6n-3) or increased (18: 2n-6, 18: 3n-3, 18: 3n-6, 18: 4n-3 and 20: 3n-3) in quantity, after 15 days of feeding, from the base level in day of hatch and/ or yolk- sac resorbed larvae. The greatest increase occurred in 18: 3n-3 from 6.4±0.1 to 106.2±13.1 μg mg lipid–1 larva–1, and the greatest decrease occurred in 22: 6n-3 (181.2±12.4 to 81.4±6.2 μg mg lipid–1 larva–1). In starved larvae, at the end of 15 days, all the fatty acids, except 18: 0, 20: 3n-3 and 20: 4n-6, decreased significantly (P<0.05) from the levels in day of hatch and/or yolk- sac resorbed larvae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dose-limiting diarrhea and myelosuppression compromise the success of irinotecan (7-ethyl-10-[4-[1-piperidino]-1-piperidino] carbonyloxycamptothecin) (CPT-11)-based chemotherapy. A recent pilot study indicates that thalidomide attenuates the toxicity of CPT-11 in cancer patients. This study aimed to investigate whether coadministered thalidomide modulated the toxicities of CPT-11 and the underlying mechanisms using several in vivo and in vitro models. Diarrhea, intestinal lesions, cytokine expression, and intestinal epithelial apoptosis were
monitored. Coadministered thalidomide (100 mg/kg i.p. for 8 days) significantly attenuated body weight loss, myelosuppression, diarrhea, and intestinal histological lesions caused by CPT-11 (60 mg/kg i.v. for 4 days). This was accompanied by inhibition of tumor necrosis factor-, interleukins 1 and 6 and interferon-, and intestinal epithelial apoptosis. Coadministered
thalidomide also significantly increased the systemic exposure of CPT-11 but decreased that of SN-38 (7-ethyl-10-hydroxycampothecin). It significantly reduced the biliary excretion and cecal exposure of CPT-11, SN-38, and SN-38 glucuronide. Thalidomide hydrolytic products inhibited hydrolysis of CPT-11 in rat liver microsomes but not in primary rat hepatocytes. In addition, thalidomide and its major hydrolytic products, such as phthaloyl glutamic acid (PGA), increased the intracellular accumulation of CPT-11 and SN-38 in primary rat hepatocytes. They also significantly decreased the transport of CPT-11 and SN-38 in Caco-2 and parental MDCKII cells. Thalidomide and PGA also significantly inhibited P-glycoprotein (PgP/MDR1), multidrug resistance-associated protein (MRP1)- and MRP2-mediated CPT-11 and SN-38 transport in MDCKII cells. These results provide insights into the pharmacodynamic and  pharmacokinetic mechanisms for the protective effects of thalidomide against CPT-11-induced intestinal toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The clinical use of irinotecan (CPT-11) is hindered by dose-limiting diarrhea and myelosuppression. Recent clinical studies indicate that thalidomide, a known tumor necrosis factor-alpha inhibitor, ameliorated the toxicities induced by CPT-11. However, the mechanisms for this are unknown. This study aimed to investigate whether combination of thalidomide modulated the toxicities of CPT-11 using a rat model and the possible role of the altered pharmacokinetic component in the toxicity modulation using in vitro models. The toxicity model was constructed by treatment of healthy rats with CPT-11 at 60 mg/kg per day by intravenous (i.v.) injection. Body weight, acute and delayed-onset diarrhea, blood cell counts, and macroscopic and microscopic intestinal damages were monitored in rats treated with CPT-11 alone or combined therapy with thalidomide at 100 mg/kg administered by intraperitoneal (i.p.) injection. Single dose and 5-day multiple-dose studies were conducted in rats to examine the effects of concomitant thalidomide on the plasma pharmacokinetics of CPT-11 and its major metabolites SN-38 and SN-38 glucuronide (SN-38G). The effect of CPT-11 on thalidomide's pharmacokinetics was also checked. Rat liver microsomes and a rat hepatoma cell line, H4-II-E cells, were used to study the in vitro metabolic interactions between these two drugs. H4-II-E cells were also used to investigate the effect of thalidomide and its hydrolytic products on the transport of CPT-11 and SN-38. In addition, the effect of thalidomide and its hydrolytic products on rat plasma protein binding of CPT-11 and SN-38 was examined. Administration of CPT-11 by i.v. for 4 consecutive days to rats induced significant body weight loss, decrease in neutrophil and lymphocyte counts, severe acute- and delayed-onset diarrhea, and intestinal damages. These toxicities were alleviated when CPT-11 was combined with thalidomide. In both single-dose and 5-day multiple-dose pharmacokinetic study, coadministered thalidomide significantly increased the area under the plasma concentration-time curve (AUC) of CPT-11, but the AUC and elimination half-life (t(1/2)) of SN-38 were significantly decreased. However, CPT-11 did not significantly alter the pharmacokinetics of thalidomide. Thalidomide at 25 and 250 microM and its hydrolytic products at a total concentration of 10 microM had no significant effect on the plasma protein binding of CPT-11 and SN-38, except for that thalidomide at 250 microM caused a significant increase in the unbound fraction (f(u)) of CPT-11 by 6.7% (P < 0.05). The hydrolytic products of thalidomide (total concentration of 10 microM), but not thalidomide, significantly decreased CPT-11 hydrolysis by 16% in rat liver microsomes (P < 0.01). The formation of both SN-38 and SN-38G from CPT-11, SN-38 glucuronidation, or intracellular accumulation of both CPT-11 and SN-38 in H4-II-E cells followed Michaelis-Menten kinetics with the one-binding site model being the best fit for the kinetic data. Coincubation or 2-hr preincubation of thalidomide at 25 microM and 250 microM and its hydrolytic products at 10 microM did not show any significant effects on CPT-11 hydrolysis and SN-38 glucuronidation. However, preincubation of H4-II-E cells with thalidomide (250 microM), its hydrolytic products (total concentration of 10 microM), or phthaloyl glutamic acid (one major thalidomide hydrolytic product, 10 microM) significantly increased the intracellular accumulation of SN-38, but not CPT-11 (P < 0.01). The dose-limiting toxicities of CPT-11 were alleviated by combination with thalidomide in rats and the pharmacokinetic modulation by thalidomide may partially explain its antagonizing effects on the toxicities of CPT-11. The hydrolytic products of thalidomide, instead of the parental drug, modulated the hepatic hydrolysis of CPT-11 and intracellular accumulation of SN-38, probably contributing to the altered plasma pharmacokinetics of CPT-11 and SN-38. Further studies are needed to explore the role of both pharmacokinetics and pharmacodynamic components in the protective effect of thalidomide against the toxicities of CPT-11.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many kinds of chemical and biological materials have been used as inducers of settlement of abalone larvae, as well as other species of marine gastropods, with responses being highly variable, even to the same chemical cue. The present study tested chemical inducers, γ-aminobutyric acid (GABA), δ-aminovaleric acid (5-AVA) and l-glutamic acid (GA) and the effects they have on larval settlement of Haliotis asinina. Additionally, a relatively inexpensive commercial substance, monosodium glutamate (MSG), was trialed. The datum provided shows all chemicals to be active inducers of settlement in this study, in order of effectiveness of 5-AVA, GABA, MSG to GA. Induction as adjudged from larval numbers settled was best at 6 h 62%, with 10−1 mM 5-AVA. At 24 h, induction was the highest at 78% when exposed to 10−2 mM 5-AVA. Larvae that were allowed to settle up to 72 h showed the highest numbers of settled larvae, and declined back to 60% when exposed to 10−2 5-AVA and 10−1 mM GABA respectively. Monosodium glutamate, although third in settlement standings would bypass the other chemicals, with regard to cost versus yield. The assessment of settlement surface, rough or smooth proved to be irrelevant, which had no significant impact on larval settlement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In multiple sclerosis, the immune system attacks the white matter of the brain and spinal cord, leading to disability and/or paralysis. Myelin, oligodendrocytes and neurons are lost due to the release by immune cells of cytotoxic cytokines, autoantibodies and toxic amounts of the excitatory neurotransmitter glutamate. Experimental autoimmune encephalomyelitis (EAE) is an animal model that exhibits the clinical and pathological features of multiple sclerosis. Current therapies that suppress either the inflammation or glutamate excitotoxicity are partially effective when administered at an early stage of EAE, but cannot block advanced disease. In a multi-faceted approach to combat EAE, we blocked inflammation with an anti-MAdCAM-1 (mucosal addressin cell adhesion molecule-1) monoclonal antibody and simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate antagonist 2,3-dihydroxy-6-nitro-7- sulfamoylbenzo(f)quinoxaline (NBQX) and the neuroprotector glycine–proline–glutamic acid (GPE; N-terminal tripeptide of insulin-like growth factor). Remarkably, administration at an advanced stage of unremitting EAE of either a combination of NBQX and GPE, or preferably all three latter reagents, resulted in amelioration of disease and repair of the CNS, as assessed by increased oligodendrocyte survival and remyelination, and corresponding decreased paralysis, inflammation, CNS apoptosis and axonal damage. Each treatment reduced the expression of nitric oxide and a large panel of proinflammatory and immunoregulatory cytokines, in particular IL-6 which plays a critical role in mediating EAE. Mice displayed discernible improvements in all physical features examined. Disease was suppressed for 5 weeks, but relapsed when treatment was suspended, suggesting treatment must be maintained to be effective. The above approaches, which allow CNS repair by inhibiting inflammation and/or simultaneously protect neurons and oligodendrocytes from damage, could thus be effective therapies for multiple sclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rheological properties of supramolecular soft functional materials are determined by the networks within the materials. This research reveals for the first time that the volume confinement during the formation of supramolecular soft functional materials will exert a significant impact on the rheological properties of the materials. A class of small molecular organogels formed by the gelation of N-lauroyl-L-glutamic acid din-butylamide (GP-1) in ethylene glycol (EG) and propylene glycol (PG) solutions were adopted as model systems for this study. It follows that within a confined space, the elasticity of the gel can be enhanced more than 15 times compared with those under un-restricted conditions. According to our optical microscopy observations and rheological measurements, this drastic enhancement is caused by the structural transition from a multi-domain network system to a single network system once the average size of the fiber network of a given material reaches the lowest dimension of the system. The understanding acquired from this work will provide a novel strategy to manipulate the network structure of soft materials, and exert a direct impact on the micro-engineering of such supramolecular materials in micro and nano scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-molecular mass organic gelators self-organizing into three-dimensional fiber networks within organic solvents have attracted much attention in recent years. However, to date, how the microstructure of fiber network is formed in a gelation process and the key factors that govern the topological structure of a gel network remain to be determined. In this work, we address these issues by investigating the in situ formation of the gel networks in the N-lauroyl-l-glutamic acid di-n-butylamide (GP-1)/propylene glycol (PG) system. By using optical microscopy, the time evolution of the gel network microstructure was investigated under various supersaturation conditions. It is found that supersaturation is one of the key factors that govern the topological structure of a gel network. In particular, the creation of the junctions turns out to be supersaturation-dependent. The rheological experiments further revealed the correlation between topological structure and mechanical properties. It suggests that the rheological properties can be effectively modified by tuning the microstructure topology of the gel network. Our results reported here provide new physical insight into the formation kinetics of a molecular gel. Furthermore, this work could be important in constructing and engineering a supramolecular structure for the purpose of applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystalline spherulitic fiber networks are commonly observed in polymeric and supramolecular functional materials. The elasticity of materials with this type of network is low if interactions between the individual spherulites are weak (mutually exclusive). Improving the elasticity of these materials is necessary because of their important applications in many fields. In this work, the engineering of the microstructures and rheological properties of this type of material is carried out. A small molecule organogel formed by the gelation of N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol (PG) is used as an example. The elasticity of this material is improved by controlling the thermodynamic driving force, the supersaturation of the gelator, and by using a selected copolymer additive to manipulate the primary nucleation of GP-1. Because of the weak interactions between the GP-1 spherulites, with the same fiber mass, the elasticity of GP-1/PG gel is less than half of those of the other two gels formed by GP-1 and 2-hydroxystearlic acid in solvent benzyl benzoate (BB), which are supported by interconnecting spherulitic fiber networks. This work develops a robust approach to the engineering of supramolecular functional materials especially those with mutually exclusive spherulite fiber networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The architecture of a biocompatible organogel formed by gelation of a small molecule organic gelator, N-lauroyl-l-glutamic acid di-n-butylamide, in isostearyl alcohol was investigated based on a supersaturation-driven crystallographic mismatch branching mechanism. By controlling the supersaturation of the system, the correlation length that determines the mesh size of the fiber network was finely tuned and the rheological properties of the gel were engineered. This approach is of considerable significance for many gel-based applications, such as controlled release of drugs that requires precise control of the mesh size. A direct cryo-transmission electron microscopy (TEM) imaging technique capable of preserving the network structure was used to visualize its nanostructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The engineering of soft functional materials based on the construction of three-dimensional interconnecting self-organized nanofiber networks is reported. The system under investigation is an organogel formed by N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol. The engineering of soft functional materials is implemented by controlling primary nucleation kinetics of GP-1, which can be achieved by both reducing thermodynamic driving force and/or introducing a tiny amount of specific copolymers (i.e., poly(methyl methacrylate comethacrylic acid)). The primary nucleation rate of GP-1 is correlated to the number density of GP-1 spherulites, which determines the overall rheological properties of soft functional materials. The results show that the presence of a tiny amount of the polymer (0.01-0.06%) can effectively inhibit the nucleation of GP-1 spherulites, which leads to the formation of integrated fiber networks. It follows that with the additive approach, the viscoelasticity of the soft functional material is significantly enhanced (i.e., more than 1.5 times at 40 °C). A combination of the thermal and additive approach led to an improvement of 3.5 times in the viscosity of the gel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.