2 resultados para giant dipole resonance

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time-resolved extinction spectroscopy is employed to study the reaction kinetics in the shape-conversion reaction involving halide ions (including Cl-, Br- and I-) etching (sculpturing) silver nanoplates. A series of time-resolved extinction spectra are obtained during the in situ etching process and the evolution of surface plasmon resonance (SPR) of the silver nanoparticles is analyzed. Spectral analysis indicates that the conversion of nanoprisms starts simultaneously with the emergence of nanodisks when the halide ions are added. The etching rate of different halide ions is evaluated through the in-plane dipole resonance peak intensity of silver nanoplates vs. the reaction time (dI/dt). The relationship between the etching rate and the halide ion concentration shows that the halide ion etching reaction can be considered as a pseudo-first-order reaction. The effect of different halide ions on the shape-conversion of silver nanoplates is compared in detail. The activation energy of the etching reaction is calculated, which indicates that the etching ability of different halide ions is on the order of Cl - < I- < Br-.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the effects of silver nano-spheroid size and elongation on plasmon wavelength are investigated, and the plasmon eigenvalues are formulated as a function of the radius and aspect ratio of the nano-particles. These can be used in eigenmode plasmonic interaction method to study interaction of nano-particles on each other at dipole resonance frequencies.. It is demonstrated that plasmon eigenvalues are partially linear with respect to radius and aspect ratio of the nano-spheroids. In addition, it is shown that the maximum enhancement occurs in the direction of the polarization angle.