134 resultados para fuzzy neural networks

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning in neural networks can broadly be divided into two categories, viz., off-line (or batch) learning and online (or incremental) learning. In this paper, a review of a variety of supervised neural networks with online learning capabilities is presented. Specifically, we focus on articles published in main indexed journals in the past 10 years (2003–2013). We examine a number of key neural network architectures, which include feedforward neural networks, recurrent neural networks, fuzzy neural networks, and other related networks. How the online learning methodologies are incorporated into these networks is exemplified, and how they are applied to solving problems in different domains is highlighted. A summary of the review that covers different network architectures and their applications is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of meta-cognitive learning has enriched the landscape of evolving systems, because it emulates three fundamental aspects of human learning: what-to-learn; how-to-learn; and when-to-learn. However, existing meta-cognitive algorithms still exclude Scaffolding theory, which can realize a plug-and-play classifier. Consequently, these algorithms require laborious pre- and/or post-training processes to be carried out in addition to the main training process. This paper introduces a novel meta-cognitive algorithm termed GENERIC-Classifier (gClass), where the how-to-learn part constitutes a synergy of Scaffolding Theory - a tutoring theory that fosters the ability to sort out complex learning tasks, and Schema Theory - a learning theory of knowledge acquisition by humans. The what-to-learn aspect adopts an online active learning concept by virtue of an extended conflict and ignorance method, making gClass an incremental semi-supervised classifier, whereas the when-to-learn component makes use of the standard sample reserved strategy. A generalized version of the Takagi-Sugeno Kang (TSK) fuzzy system is devised to serve as the cognitive constituent. That is, the rule premise is underpinned by multivariate Gaussian functions, while the rule consequent employs a subset of the non-linear Chebyshev polynomial. Thorough empirical studies, confirmed by their corresponding statistical tests, have numerically validated the efficacy of gClass, which delivers better classification rates than state-of-the-art classifiers while having less complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the effectiveness of an ordering algorithm applied to the supervised Fuzzy ARTMAP (FAM) neural network in pattern classification tasks. Before presenting the input patterns to the FAM network (known as ordered FAM), a fixed order of input patterns is first identified using the ordering algorithm. An experimental study is conducted to compare the results from ordered FAM with the average and voting results from original FAM. In the study, a pool of the original FAM networks is trained using different sequences of input patterns, and the results are averaged. Outputs from various original FAM networks can also be combined using a majority voting strategy to reach a final result. A database comprising various symptoms and measurements of patients suffering from heart attack is used to evaluate the various schemes of the FAM network in medical pattern classification tasks. The results are compared, analyzed, and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims at optimally adjusting a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. Neural network (NN) and fuzzy logic system (FLS) are two methods applied to develop intelligent traffic timing controller. For this purpose, an intersection is considered and simulated as an intelligent agent that learns how to set green times in each cycle based on the traffic information. The training approach and data for both these learning methods are similar. Both methods use genetic algorithm to tune their parameters during learning. Finally, The performance of the two intelligent learning methods is compared with the performance of simple fixed-time method. Simulation results indicate that both intelligent methods significantly reduce the total delay in the network compared to the fixed-time method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying an appropriate architecture of an artificial neural network (ANN) for a given task is important because learning and generalisation of an ANN is affected by its structure. In this paper, an online pruning strategy is proposed to participate in the learning process of two constructive networks, i.e. fuzzy ARTMAP (FAM) and fuzzy ARTMAP with dynamic decay adjustment (FAMDDA), and the resulting hybrid networks are called FAM/FAMDDA with temporary nodes (i.e. FAM-T and FAMDDA-T, respectively). FAM-T and FAMDDA-T possess a capability of reducing the network complexity online by removing unrepresentative neurons. The performances of FAM-T and FAMDDA-T are evaluated and compared with those of FAM and FAMDDA using a total of 13 benchmark data sets. To demonstrate the applicability of FAM-T and FAMDDA-T, a real fault detection and diagnosis task in a power plant is tested. The results from both benchmark studies and real-world application show that FAMDDA-T and FAM-T are able to yield satisfactory classification performances, with the advantage of having parsimonious network structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, two evolutionary artificial neural network (EANN) models that are based on integration of two supervised adaptive resonance theory (ART)-based artificial neural networks with a hybrid genetic algorithm (HGA) are proposed. The search process of the proposed EANN models is guided by a knowledge base established by ART with respect to the training data samples. The EANN models explore the search space for “coarse” solutions, and such solutions are then refined using the local search process of the HGA. The performances of the proposed EANN models are evaluated and compared with those from other classifiers using more than ten benchmark data sets. The applicability of the EANN models to a real medical classification task is also demonstrated. The results from the experimental studies demonstrate the effectiveness and usefulness of the proposed EANN models in undertaking pattern classification problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intelligent system for text-dependent speaker recognition is proposed in this paper. The system consists of a wavelet-based module as the feature extractor of speech signals and a neural-network-based module as the signal classifier. The Daubechies wavelet is employed to filter and compress the speech signals. The fuzzy ARTMAP (FAM) neural network is used to classify the processed signals. A series of experiments on text-dependent gender and speaker recognition are conducted to assess the effectiveness of the proposed system using a collection of vowel signals from 100 speakers. A variety of operating strategies for improving the FAM performance are examined and compared. The experimental results are analyzed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks (ANN) are increasingly used to solve many problems related to pattern recognition and object classification. In this paper, we report on a study using artificial neural networks to classify two kinds of animal fibers: merino and mohair. We have developed two different models, one extracting nine scale parameters with image processing, and the other using an unsupervised artificial neural network to extract features automatically, which are determined in accordance with the complexity of the scale structure and the accuracy of the model. Although the first model can achieve higher accuracy, it requires more effort for image processing and more prior knowledge, since the accuracy of the ANN largely depends on the parameters selected. The second model is more robust than the first, since only raw images are used. Because only ordinary optical images taken with a microscope are employed, we can use the approach for many textile applications without expensive equipment such as scanning electron microscopy.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a visual feedback control approach based on neural networks is presented for a robot with a camera installed on its end-effector to trace an object in an unknown environment. First, the one-to-one mapping relations between the image feature domain of the object to the joint angle domain of the robot are derived. Second, a method is proposed to generate a desired trajectory of the robot by measuring the image feature parameters of the object. Third, a multilayer neural network is used for off-line learning of the mapping relations so as to produce on-line the reference inputs for the robot. Fourth, a learning controller based on a multilayer neural network is designed for realizing the visual feedback control of the robot. Last, the effectiveness of the present approach is verified by tracing a curved line using a 6-degrees-of-freedom robot with a CCD camera installed on its end-effector. The present approach does not necessitate the tedious calibration of the CCD camera and the complicated coordinate transformations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of the topology of a neural network and correct parameters for the learning algorithm is a tedious task for designing an optimal artificial neural network, which is smaller, faster and with a better generalization performance. In this paper we introduce a recently developed cutting angle method (a deterministic technique) for global optimization of connection weights. Neural networks are initially trained using the cutting angle method and later the learning is fine-tuned (meta-learning) using conventional gradient descent or other optimization techniques. Experiments were carried out on three time series benchmarks and a comparison was done using evolutionary neural networks. Our preliminary experimentation results show that the proposed deterministic approach could provide near optimal results much faster than the evolutionary approach.