99 resultados para fuzzy logic

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computerized clinical guidelines can provide significant benefits in terms of health outcomes and costs, however, their effective computer implementation presents significant problems. Vagueness and ambiguity inherent in natural language (textual) clinical guidelines makes them problematic for formulating automated alerts or advice. Fuzzy logic allows us to formalize the treatment of vagueness in a decision support architecture. In care plan on-line (CPOL), an intranet-based chronic disease care planning system for general practitioners (GPs) in use in South Australia, we formally treat fuzziness in interpretation of quantitative data, formulation of recommendations and unequal importance of clinical indicators. We use expert judgment on cases, as well as direct estimates by experts, to optimize aggregation operators and treat heterogeneous combinations of conjunction and disjunction that are present in the natural language decision rules formulated by specialist teams.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How to provide cost-effective strategies for Software Testing has been one of the research focuses in Software Engineering for a long time. Many researchers in Software Engineering have addressed the effectiveness and quality metric of Software Testing, and many interesting results have been obtained. However, one issue of paramount importance in software testing – the intrinsic imprecise and uncertain relationships within testing metrics – is left unaddressed. To this end, a new quality and effectiveness measurement based on fuzzy logic is proposed. The software quality features and analogy-based reasoning are discussed, which can deal with quality and effectiveness consistency between different test projects. Experimental results are also provided to verify the proposed measurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How to provide cost-effective strategies for Software Testing has been one of the research focuses in Software Engineering for a long time. Many researchers in Software Engineering have addressed the effectiveness and quality metric of Software Testing, and many interesting results have been obtained. However, one issue of paramount importance in software testing — the intrinsic imprecise and uncertain relationships within testing metrics — is left unaddressed. To this end, a new quality and effectiveness measurement based on fuzzy logic is proposed. Related issues like the software quality features and fuzzy reasoning for test project similarity measurement are discussed, which can deal with quality and effectiveness consistency between different test projects. Experiments were conducted to verify the proposed measurement using real data from actual software testing projects. Experimental results show that the proposed fuzzy logic based metrics is effective and efficient to measure and evaluate the quality and effectiveness of test projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computerized clinical guidelines can provide significant benefits to health outcomes and costs, however, their effective implementation presents significant problems. Vagueness and ambiguity inherent in natural (textual) clinical guidelines is not readily amenable to formulating automated alerts or advice. Fuzzy logic allows us to formalize the treatment of vagueness in a decision support architecture. This paper discusses sources of fuzziness in clinical practice guidelines. We consider how fuzzy logic can be applied and give a set of heuristics for the clinical guideline knowledge engineer for addressing uncertainty in practice guidelines. We describe the specific applicability of fuzzy logic to the decision support behavior of Care Plan On-Line, an intranet-based chronic care planning system for General Practitioners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Humans have a limited ability to accurately and continuously analyse large amount of data. In recent times, there has been a rapid growth in patient monitoring and medical data analysis using smart monitoring systems. Fuzzy logic-based expert systems, which can mimic human thought processes in complex circumstances, have indicated potential to improve clinicians' performance and accurately execute repetitive tasks to which humans are ill-suited. The main goal of this study is to develop a clinically useful diagnostic alarm system based on fuzzy logic for detecting critical events during anaesthesia administration. Method. The proposed diagnostic alarm system called fuzzy logic monitoring system (FLMS) is presented. New diagnostic rules and membership functions (MFs) are developed. In addition, fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS), and clustering techniques are explored for developing the FLMS' diagnostic modules. The performance of FLMS which is based on fuzzy logic expert diagnostic systems is validated through a series of offline tests. The training and testing data set are selected randomly from 30 sets of patients' data. Results. The accuracy of diagnoses generated by the FLMS was validated by comparing the diagnostic information with the one provided by an anaesthetist for each patient. Kappa-analysis was used for measuring the level of agreement between the anaesthetist's and FLMS's diagnoses. When detecting hypovolaemia, a substantial level of agreement was observed between FLMS and the human expert (the anaesthetist) during surgical procedures. Conclusion. The diagnostic alarm system FLMS demonstrated that evidence-based expert diagnostic systems can diagnose hypovolaemia, with a substantial degree of accuracy, in anaesthetized patients and could be useful in delivering decision support to anaesthetists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy may drop due to presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. This paper proposes the application of Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) for the problem of STLF. IT2 FLSs, with extra degrees of freedom, are an excellent tool for handling prevailing uncertainties and improving the prediction accuracy. Experiments conducted with real datasets show that IT2 FLS models appropriately approximate future load demands with an acceptable accuracy. Furthermore, they demonstrate an encouraging degree of accuracy superior to feedforward neural networks used in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate short term load forecasting (STLF) is essential for a variety of decision-making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. This paper proposes the application of Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) for the problem of STLF. IT2 FLSs, with additional degrees of freedom, are an excellent tool for handling uncertainties and improving the prediction accuracy. Experiments conducted with real datasets show that IT2 FLS models precisely approximate future load demands with an acceptable accuracy. Furthermore, they demonstrate an encouraging degree of accuracy superior to feedforward neural networks and traditional type-1 Takagi-Sugeno-Kang (TSK) FLSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes a novel non-parametric method for construction of prediction intervals (PIs) using interval type-2 Takagi-Sugeno-Kang fuzzy logic systems (IT2 TSK FLSs). The key idea in the proposed method is to treat the left and right end points of the type-reduced set as the lower and upper bounds of a PI. This allows us to construct PIs without making any special assumption about the data distribution. A new training algorithm is developed to satisfy conditions imposed by the associated confidence level on PIs. Proper adjustment of premise and consequent parameters of IT2 TSK FLSs is performed through the minimization of a PI-based objective function, rather than traditional error-based cost functions. This new cost function covers both validity and informativeness aspects of PIs. A metaheuristic method is applied for minimization of the non-linear non-differentiable cost function. Quantitative measures are applied for assessing the quality of PIs constructed using IT2 TSK FLSs. The demonstrated results for four benchmark case studies with homogenous and heterogeneous noise clearly show the proposed method is capable of generating high quality PIs useful for decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are used in health monitoring, tracking and security applications. Such networks transfer data from specific areas to a nominated destination. In the network, each sensor node acts as a routing element for other sensor nodes during the transmission of data. This can increase energy consumption of the sensor node. In this paper, we propose a routing protocol for improving network lifetime and performance. The proposed protocol uses type-2 fuzzy logic to minimize the effects of uncertainty produced by the environmental noise. Simulation results show that the proposed protocol performs better than a recently developed routing protocol in terms of extending network lifetime and saving energy and also reducing data packet lost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new type reduction (TR) algorithm for interval type-2 fuzzy logic systems (IT2 FLSs). Flexibility and adaptiveness are the key features of the proposed non-parametric algorithm. Lower and upper firing strengths of rules as well as their consequent coefficients are fed into a neural network (NN). NN output is a crisp value that corresponds to the defuzzified output of IT2 FLSs. The NN type reducer is trained through minimization of an error-based cost function with the purpose of improving modelling and forecasting performance of IT2 FLS models. Simulation results indicate that application of the proposed TR algorithm greatly enhances modelling and forecasting performance of IT2 FLS models. This benefit is achieved in no cost, as the computational requirement of the proposed algorithm is less than or at most equivalent to traditional TR algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of polymerization reactors is a challenging issue for researchers due to the complex reaction mechanisms. A lot of reactions occur simultaneously during polymerization. This leads to a polymerization system that is highly nonlinear in nature. In this work, a nonlinear advanced controller, named fuzzy logic controller (FLC), is developed for monitoring the batch free radical polymerization of polystyrene (PS) reactor. Temperature is used as an intermediate control variable to control polymer quality, because the products quality and quantity of polymer are directly depends on temperature. Different FLCs are developed through changing the number of fuzzy membership functions (MFs) for inputs and output. The final tuned FLC results are compared with the results of another advanced controller, named neural network based model predictive controller (NN-MPC). The simulation results reveal that the FLC performance is better than NN-MPC in terms of quantitative and qualitative performance criterion.