145 resultados para fracture thresholds

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis, in the absence of fracture, is defined as a deficit in bone mineral density (BMD) of 2.5 SD or more below the young adult reference mean in postmenopausal Caucasian populations. BMD is a measure of fracture risk but not the sole predictor. We have assessed a combination of easily accessible measures of age, height, weight, and BMD to improve fracture risk assessment. Women with low trauma fractures and a control group were recruited from south-eastern Australia. Discriminant analysis derived multivariate equations that assessed fracture risk. Age was not in the best models at the spine and forearm sites. Weight and height contributed to the relationship for the forearm sites only. At the proximal femur, the BMD level that separates fracture cases from nonfracture cases, increases with age. These separation levels of BMD were higher than the WHO's level of osteoporosis (T-score < −2.5 SD) at ages older than 62 years. This increasing BMD threshold with age suggests that other age-related risk factors assume increasing importance among the elderly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Australia, benefits for antifracture therapies have been available for patients with osteoporosis and a prior fracture. No benefits were available to those with no prior fracture. We aimed to define, in women with no prior fracture, age-related thresholds of bone mineral density (BMD) associated with fracture risk equivalent to that of women with prior fracture and osteoporosis. A case-control study of women (≥50 yr) was conducted, including 291 fracture cases and 823 controls. BMD was measured at the proximal femur and posterior anterior (PA) spine. A fracture risk score (FRS) for the group with no prior fracture was calculated with discriminant analysis. The thresholds for equivalent fracture risk between those with no prior fracture and those with prior fracture were assessed using logistic regression. Increasing the FRS to +0.98 in women with no prior fracture resulted in equivalent odds of sustaining a fracture to those with prior fracture and osteoporosis. The corresponding T-score thresholds at the spine were −4.6 at 50 yr, −3.9 at 60 yr, −3.1 at 70 yr, and −2.4 at 80 yr. The femoral neck T-score thresholds were lower by 0.5 standard deviation. The high-risk individuals defined by this study should be considered for primary fracture prevention therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Areal bone mineral density is commonly categorised into normal bone mineral density, osteopaenia and osteoporosis on the basis of nominal thresholds recommended by the World Health Organization. However, bone mineral density is a continuous variable and there is a strong association between lower bone mineral density and greater risk for fracture. Fracture risk is not negligible in persons with moderate deficits in bone mineral density. Although absolute fracture risk is greatest for individuals with osteoporosis, more than half of the fractures arise from those with osteopaenia, and even normal bone mineral density, a probable consequence of greater numbers of individuals at risk in these categories. However, areal bone mineral density measurements used commonly in clinical practice do not detect differences in bone tissue properties, geometry and microarchitecture, which contribute to bone strength. Newer technologies such as high-resolution peripheral computed tomography have the advantage of assessing trabecular and cortical components of bone separately, in addition to geometric characteristics of the skeleton. Quantifying these parameters and considering clinical risk factors that affect fracture risk independent of bone quantity and quality, may better discriminate between high- and low-risk individuals. This would improve the decision-making for targeting appropriate interventions, either lifestyle or medication, to reduce thepublic health burden of fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of human gait requires accurate measurement of foot-ground contact, often determined using either foot-ground reaction force thresholds or kinematic data. This study examined the differences in calculating event times across five vertical force thresholds and validated a vertical acceleration-based algorithm as a measure of heel contact and toe-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delamination resistance and nanocreep properties of 2/2 twill weave carbon epoxy composites manufactured by hot press, autoclave, and QuickstepTM process are characterized and analyzed. Quickstep is a fluid filled, balanced pressure heated floating mold technology, which is recently developed in Perth, Western Australia for the manufacture of advanced composite components. Mode I and Mode II interlaminar fracture toughness tests, and nanoindentation creep tests on matrix materials show that the fast ramp rate of the Quickstep process provides mechanical properties comparable to that of autoclave at a lower cost for composite manufacturing. Low viscosity during ramping process and good fiber wetting are believed to be the reasons that this process produces composites with high delamination and creep-resistant properties. Nanocreep properties are analyzed using a Kelvin–Voigt model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

'Torayca' T800H/3900-2 is the first material qualified on Boeing Material Specification (BMS 8-276) which utilizes the thermoplastic-particulate interlayer toughening technology. Two manufacturing processes, the autoclave process and the fast heating rated Quickstep™ process, were employed to cure this material. The Quickstep process is a unique composite production technology which utilizes the fast heat transfer rate of fluid to heat and cure polymer composite components. The manufacturing influence on the mode I delamination fracture toughness of laminates was investigated by performing double cantilever beam tests. The composite specimens fabricated by two processes exhibited dissimilar delamination resistance curves (R-curves) under mode I loading. The initial value of fracture toughness GIC-INIT was 564 J/m2 for the autoclave specimens and 527 J/m2 for the Quickstep specimens. However, the average propagation fracture toughness GIC-PROP was 783 J/m2 for the Quickstep specimens, which was 2.6 times of that for the autoclave specimens. The mechanism of fracture occurred during delamination was studied under scanning electron microscope (SEM). Three types of fracture were observed: the interlayer fracture, the interface fracture, and the intralaminar fracture. These three types of fracture played different roles in affecting the delamination resistance curves during the crack growth. More fiber bridging was found in the process of delamination for the Quickstep specimens. Better fiber/matrix adhesion was found in the Quickstep specimens by conducting indentation-debond tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While advanced high strength steels (AHSS) have numerous advantages for the automotive industry, they can be susceptible to interfacial fracture when spot-welded. In this study, the susceptibility of interfacial fracture to spot-weld microstructure and hardness is examined, as well as the corresponding relationships between fatigue, overload performance, and interfacial fracture for a TRIP (transformation induced plasticity) steel. Simple post-weld heat-treatments were used to alter the weld microstructure. The effect on interfacial fracture of diluting the weld pool by welding the TRIP material to non-TRIP steel was examined, along with the effect of altering the base material microstructure. Results show that weld hardness is not a good indicator of either the susceptibility to interfacial fracture, or the strength of the joint, and that interfacial fracture does not necessarily lead to a decrease in strength compared to conventional weld-failure mechanisms, i.e. button pullout. It was also found that while interfacial fracture does affect low cycle to failure behavior, there was no effect on high cycle fatigue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.