5 resultados para fracture load

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an experimental investigation on mode I delamination of z-pinned double-cantilever-beams (DCB) and associate z-pin bridging mechanisms. Tests were performed with three types of samples: big-pin with an areal density of 2%, small-pin with an areal density of 2% and small-pin with an areal density of 0.5%. The loading rates for each type of samples were set at 1 mm/min and 100 mm/min. Comparison of fracture load under different loading rates shows the rate effects on delamination crack opening and delamination growth. Optical micrographs of z-pins after pullout were also presented to identify the bridging mechanisms of z-pins under different loading rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction stir lap welding (FSLW) experiments have been conducted to study the effects of tool positioning on microstructures formed in the Al-to-steel interface region and on joint strength, defined as maximum applied force over the width (F m/w s) of the test sample, of the welds. Various pin positioning and speed conditions were used in the FSLW experiments followed by microstructure examination on the interface regions and tensile-shear testing on the welds, including an examination on crack propagation in mixed stir zone. It was found that when the pin was close to the bottom steel piece, Al-to-steel reaction occurred resulting in intermetallic outbursts formed along the interface. This represents the case of incomplete metallurgical joint. When the pin was lowered to just reach the steel, a thin and continued interface intermetallic layer formed. Evidences and consideration on growth kinetics have suggested that the layer could only remain thin (≤2.5 μm) during FSLW. This layer could bear a high load during tensile-shear testing and the adjacent aluminium deformed and fractured instead. The resulting F m/w s was high. When the pin penetrated to steel, F m/w s reduced due to brittle fracture being dominant inside mixed stir zone. Evidences have shown that the amount of penetration and speed condition during FSLW do not have large effects on F m/w s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of the methodology for creating reliable digital material representation (DMR) models of dual-phase steels and investigation of influence of the martensite volume fraction on fracture behavior under tensile load are the main goals of the paper. First, an approach based on image processing algorithms for creating a DMR is described. Then, obtained digital microstructures are used as input for the numerical model of deformation, which takes into account mechanisms of ductile fracture. Ferrite and martensite material model parameters are evaluated on the basis of micropillar compression tests. Finally, the model is used to investigate the impact of the martensite volume fraction on the DP steel behavior under plastic deformation. Results of calculations are presented and discussed in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Although there is a documented social gradient for osteoporosis, the underlying mechanism(s) for that gradient remain unknown. We propose a conceptual model based upon the allostatic load theory, to suggest how DNA methylation (DNAm) might underpin the social gradient in osteoporosis and fracture. We hypothesise that social disadvantage is associated with priming of inflammatory pathways mediated by epigenetic modification that leads to an enhanced state of inflammatory reactivity and oxidative stress, and thus places socially disadvantaged individuals at greater risk of osteoporotic fracture. METHODS/RESULTS: Based on a review of the literature, we present a conceptual model in which social disadvantage increases stress throughout the lifespan, and engenders a proinflammatory epigenetic signature, leading to a heightened inflammatory state that increases risk for osteoporotic fracture in disadvantaged groups that are chronically stressed. CONCLUSIONS: Our model proposes that, in addition to the direct biological effects exerted on bone by factors such as physical activity and nutrition, the recognised socially patterned risk factors for osteoporosis also act via epigenetic-mediated dysregulation of inflammation. DNAm is a dynamic modulator of gene expression with considerable relevance to the field of osteoporosis. Elucidating the extent to which this epigenetic mechanism transduces the psycho-social environment to increase the risk of osteoporotic fracture may yield novel entry points for intervention that can be used to reduce individual and population-wide risks for osteoporotic fracture. Specifically, an epigenetic evidence-base may strengthen the importance of lifestyle modification and stress reduction programs, and help to reduce health inequities across social groups. MINI ABSTRACT: Our conceptual model proposes how DNA methylation might underpin the social gradient in osteoporotic fracture. We suggest that social disadvantage is associated with priming of inflammatory signalling pathways, which is mediated by epigenetic modifications, leading to a chronically heightened inflammatory state that places disadvantaged individuals at greater risk of osteoporosis.