19 resultados para flaxseed

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compliance or elasticity of the arterial system, an important index of circulatory function, diminishes with increasing cardiovascular risk. Conversely, systemic arterial compliance improves through eating of fish and fish oil. We therefore tested the value of high intake of alpha-linolenic acid, the plant precursor of fish fatty acids. Fifteen obese people with markers for insulin resistance ate in turn four diets of 4 weeks each: saturated/high fat (SHF), alpha-linolenic acid/low fat (ALF), oleic/low fat (OLF), and SHF. Daily intake of alpha-linolenic acid was 20 g from margarine products based on flax oil. Systemic arterial compliance was calculated from aortic flow velocity and aortic root driving pressure. Plasma lipids, glucose tolerance, and in vitro LDL oxidizability were also measured. Systemic arterial compliance during the first and last SHF periods was 0.42 +/- 0.12 (mean +/- SD) and 0.56 +/- 0.21 units based on milliliters per millimeter of mercury. It rose significantly to 0.78 +/- 0.28 (P < .0001) with ALF; systemic arterial compliance with OLF was 0.62 +/- 0.19, lower than with ALF (P < .05). Mean arterial pressures and results of oral glucose tolerance tests were similar during ALF, OLF, and second SHF; total cholesterol levels were also not significantly different. However, insulin sensitivity and HDL cholesterol diminished and LDL oxidizability increased with ALF. The marked rise in arterial compliance at least with alpha-linolenic acid reflected rapid functional improvement in the systemic arterial circulation despite a rise in LDL oxidizability. Dietary n-3 fatty acids in flax oil thus confer a novel approach to improving arterial function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties of fibered flaxseed were investigated within moisture content varying from 6.21 to 16.29%. The length, width, thickness and geometric mean diameter increased from 4.20 to 4.44mm, 1.99 to 2.13mm, 0.91 to 0.95mm, and 1.95 to 2.06mm, respectively in the moisture content range. One thousand seed weight increased linearly from 4.22 to 4.62g. The bulk density decreased from 726.783 to 611.872kg/m3, while the true density increased from 1165.265 to 1289.341kg/m3 in the moisture content range. The porosity values of flaxseed increased linearly from 37.67 to 52.54%. The highest static coefficient of friction was found on the plywood surface, while the lowest on the stainless steel surface. The static coefficient of friction increased from 0.467 to 0.972, 0.442 to 0.864, 0.492 to 0.927, and 0.490 to 0.845 for plywood, stainless steel, aluminum sheet and galvanized iron, respectively. The angle of repose increased linearly from 25.7° to 33.8° in the moisture content range. The results are necessary for design of equipment to handling, transportation, processing, and the storage of flaxseed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaxseed protein isolate (FPI) and flaxseed gum (FG) were extracted, and the electrostatic complexation between these two biopolymers was studied as a function of pH and FPI-to-FG ratio using turbidimetric and electrophoretic mobility (zeta potential) tests. The zeta potential values of FPI, FG, and their mixtures at the FPI-to-FG ratios of 1:1, 3:1, 5:1, 10:1, 15:1 were measured over a pH range 8.0-1.5. The alteration of the secondary structure of FPI as a function of pH was studied using circular dichroism. The proportion of a-helical structure decreased, whereas both β-sheet structure and random coil structure increased with the lowering of pH from 8.0 to 3.0. The acidic pH affected the secondary structure of FPI and the unfolding of helix conformation facilitated the complexation of FPI with FG. The optimum FPI-to-FG ratio for complex coacervation was found to be 3:1. The critical pH values associated with the formation of soluble (pHc) and insoluble (pHΦ1) complexes at the optimum FPI-to-FG ratio were found to be 6.0 and 4.5, respectively. The optimum pH (pHopt) for the optimum complex coacervation was 3.1. The instability and dissolution of FPI-FG complex coacervates started (pHΦ2) at pH2.1. These findings contribute to the development of FPI-FG complex coacervates as delivery vehicles for unstable albeit valuable nutrients such as omega-3 fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaxseed oil, a rich source of omega-3 fatty acids, was microencapsulated in a novel matrix formed by complex coacervation between flaxseed protein isolate (FPI) and flaxseed gum (FG). This matrix was crosslinking with glutaraldehyde. Liquid microcapsules with three core (oil)-to-wall ratios (1:2, 1:3 and 1:4) were prepared and spray-dried or freeze-dried to produce powders. The microencapsulation efficiency, surface oil, morphology and oxidative stability of these microcapsules were determined. The spray-dried solid microcapsules had higher oil microencapsulation efficiency, lower surface oil content, smoother surface morphology and higher oxidation stability than the freeze-dried microcapsules. The highest microencapsulation efficiency obtained in spray-dried microcapsules was 87% with a surface oil of 2.78% at core-to-wall ratio 1:4 and oil load 20%. The oxidation stability obtained from spray-dried microcapsules at core-to-wall ratio of 1:4 was nearly double that of the unencapsulated flaxseed oil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To determine whether there is an association between dietary omega-3 (ω-3) fatty acid intake, age, and intraocular pressure (IOP) caused by altered aqueous outflow. Methods: Sprague–Dawley rats were fed either ω-3–sufficient (ω-3+) or ω-3–deficient (ω-3) diets from conception. The diets had 7% lipid content. The ω-3+ diet contained safflower, flaxseed, and tuna oils (5.5:1.0:0.5), and the ω-3 diet contained safflower oil only. Intraocular pressure was measured at 5 to 40 weeks of age under light anesthesia (ω-3+, n = 39; ω-3, n = 48). Aqueous outflow was determined at 45 weeks in a subgroup of animals (ω-3+, n = 15;ω-3, n = 22) using pulsed infusion. Ciliary body tissues (n = 6 per group) were assayed for fatty acid content by thin-layer and gas-liquid chromatography in both diet groups. Results: Animals raised on ω-3+ diets had a 13% decrease in IOP at 40 weeks of age (13.48 ± 0.32 mm Hg vs. 15.46 ± 0.29 mm Hg; P < 0.01). When considered as a change in IOP relative to 5 weeks of age, the ω-3+ group showed a 23% decrease (P < 0.001). This lower IOP in the ω-3+ diet group was associated with a significant increase (+56%; P < 0.001) in outflow facility and a decrease in ocular rigidity (–59%; P < 0.001). The ω-3+ group showed a 3.3 times increase in ciliary body docosahexaenoic acid (P < 0.001). Conclusions: Increasing dietary ω-3 reduces IOP with age because of increased outflow facility, likely resulting from an increase in docosanoids. This indicates that dietary manipulation may provide a modifiable factor for IOP regulation. However, further studies are needed to consider whether this can modify the risk for glaucoma and can play a role in treatment of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary intake of fats and sterols has long been known to play a critical role in human health. High proportions of saturated fat, which increase blood cholesterol levels, are mainly found in animal fat and some plant oil (e.g. cocoa butter, palm oil etc.). The predominant polyunsaturated fatty acid (PUFA) in the Western diet is linoleic acid (LA; 18:2n-6), an essential fatty acid, which is commonly found in vegetable seed oils. This is the parent fatty acid of n-6 series PUFA, which can be converted in vivo to C20 and C22 n-6 long chain (LC) PUFA. α‐linolenic acid (ALA; 18:3n-3) is less abundant than LA and is another essential fatty acid; ALA is also present in some vegetable oils such as perilla, flaxseed, canola, soybean and walnut oils, and is the precursor of C20 and C22 n-3 LC PUFA. Sterols are widely distributed in animal tissue and plants, with cholesterol being the major sterol in animal tissue and β-sitosterol, campesterol and stigmasterol being the main sterols in plants. It has long been recognized that an increased dietary intake of saturated fat and (to a lesser extent) cholesterol, raises plasma/serum total and low-density lipoprotein (LDL)-cholesterol, and PUFA decreases these levels. Results from recent studies have shown that plasma/serum levels of lipids and lipoprotein lipids can also be decreased by plant sterols (phytosterols) and diacylglycerol (DAG). Conjugated linoleic acid (CLA, cis-9,trans-11−18:2) has been reported to have anticancer and antidiabetic activities. Fat as the DAG form has also been reported to have anti-obesity effects. Omega-3 PUFA have a beneficial effect on increased heart rate variability, decreased risk of stroke, reduction of both systolic and diastolic blood pressure and may be effective in managing depression in adults. Gamma-linolenic acid (GLA) and phytosterols have an anti-inflammatory activity. The GLA, when combined with docosahexaenoic acid (DHA), have been reported to have a beneficial effect in hyperactive children. These data show that various lipids are powerful bioactive compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background : Dietary ω-3 fatty acid deficiency can lead to hypertension in later life; however, hypertension is affected by numerous other dietary factors. We examined the effect of altering the dietary protein level on blood pressure in animals deficient or sufficient in ω-3 fatty acids.

Methods : Female rats were placed on one of four experimental diets 1 week prior to mating. Diets were either deficient (10% safflower oil; DEF) or sufficient (7% safflower oil, 3% flaxseed oil; SUF) in ω-3 fatty acids and contained 20 or 30% casein (DEF20, SUF20, DEF30, SUF30). Offspring were maintained on the maternal diet for the duration of the experiment. At 12, 18, 24, and 30 weeks, blood pressure was assessed by tail cuff plethysmography.

Results : At both 12 and 18 weeks of age, no differences in blood pressure were observed based on diet, however, by 24 weeks hypertension was evident in DEF30 animals; there were no blood pressure differences between the other groups. This hypertension in DEF30 group was increased at 30 weeks, with systolic, diastolic, and mean arterial pressure all elevated.

Conclusions : These results indicate that the hypertension previously attributed to ω-3 fatty acid deficiency is dependent on additional dietary factors, including protein content. Furthermore, this study is the first to plot the establishment of ω-3 fatty acid deficiency hypertension over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ω-3 polyunsaturated fatty acid deficiency, particularly during the prenatal period, can cause hypertension in later life. This study examined the effect of different sources of α-linolenic acid (canola oil or flaxseed oil) in the prevention of hypertension and other metabolic symptoms induced by an ω-3 fatty acid-deficient diet. Dams were provided one of three experimental diets from 1 week before mating. Diets were either deficient (10% safflower oil-DEF) or sufficient (7% safflower oil+3% flaxseed oil-SUF-F; or 10% canola oil-SUF-C) in ω-3 fatty acids. The male offspring were continued on the maternal diet from weaning for the duration of the study. Body weight, ingestive behaviors, blood pressure, body composition, metabolic rate, plasma leptin and brain fatty acids were all assessed. The DEF animals were hypertensive at 24 weeks of age compared with SUF-F or SUF-C animals; this was not evident at 12 weeks. These results suggest that different sources of ALA are effective in preventing hypertension related to ω-3 fatty acid deficiency. However, there were other marked differences between the DEF and, in particular, the SUF-C phenotype including lowered body weight, adiposity, leptin and food intake in SUF-C animals. SUF-F animals also had lower, but less marked reductions in adiposity and leptin compared with DEF animals. The differences observed between DEF, SUF-F and SUF-C phenotypes indicate that body fat and leptin may be involved in ω-3 fatty acid deficiency hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

α-Linseed, camelina. perilla, and echium oils are n-3 C18 polyunsaturated fatty acid (PUFA)-rich vegetable oil sources viewed as favorable replacements to fish oil in aquaculture feed (aquafeed) production in consideration of their high (α-linolenic acid (ALA, 18:3n-3) and/or stearidonic acid (SDA, 18:4n-3) contents and potential for subsequent bioconversion to n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in farmed aquatic species. While the total production of these oils is currently low in comparison with that of other terrestrial oil sources, their distinct fatty acid composition and high n-3 to n-6 ratio deliver a unique substitute to fish oil in aquafeeds, presently unparalleled in other alternative terrestrial oil sources. The dietary inclusion of these oil sources has therefore attracted significant research attention, resulting in a multitude of investigations across a broad range of aquatic species (finfish and crustaceans). Generally, providing that the essential fatty acid (EFA) requirements of the species under investigation were met and an adequate level of fish meal was present in the diet, it was found possible to replace 100% and 60-70% of the dietary fish oil component for freshwater and marine species, respectively, with minimal impact on growth performance indices. However, the substitution of fish oil with n-3-rich vegetable oils and/or vegetable oil blends resulted in substantially reduced concentrations of health-promoting eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in the edible portion of the farmed species. This chapter provides an overview of the use of n-3 PUFA-rich vegetable oils and/or vegetable oil blends for use in aquafeeds. In particular, key aspects of oil production, processing, and refinement will be presented, and individual differences pertaining to the physical, chemical, and nutritional characteristics of the oil types will be highlighted. Following on from this, a summary of the key findings relevant to n-3 PUFA-rich vegetable oil inclusion in aquafeeds will be discussed, with particular emphasis placed on growth performance and nutritional modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recommendations to endorse the sustainability of wild fish stock utilisation, supporting the health of marine ecosystems, are clashing with those to increase omega-3 fatty acids (n−3 LC-PUFA) consumption and promoting human health.

The objective of this study was to evaluate the role of salmonid aquaculture as a user or supplier of n−3 LC-PUFA, as a means of understanding the potential of the sector in conserving or depleting wild fisheries. A case-study feeding trial was implemented on rainbow trout up to commercial size, in which fish were fed a fish oil- or a linseed oil-diet. Harvested fish were analysed for fatty acid composition and difference and liking using consumers. The n−3 LC-PUFA input/n−3 LC-PUFA output ratio was computed. Consumers showed no preference, but were able to distinguish between samples. The fatty acids of the fillets were significantly modified by the diets. On the input side, for the production of 100 g of fish fillet, it was necessary to use 8.6 g of n−3 LC-PUFA to produce an output of 1.9 g of n−3 LC-PUFA in the fish oil-fed fish; in contrast it was only necessary to use 270 mg of n−3 LC-PUFA to produce 560 mg of these fatty acids in the linseed oil-fed fish. It was showed that the substitution of fish oil with linseed oil in aquafeed is an easily implemented tool to transform salmonids farming from a consumer into a net producer of health promoting n−3 LC-PUFA and accomplish its role in conserving wild fisheries in the future.