28 resultados para fibre structure

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fatigue behaviour of natural fibres is important for fibre processing efficiency as well as the properties and performance of products made from these fibres. This chapter presents some fibre fatigue results obtained from various experimental methods and testing conditions. It demonstrates that many factors, including fibre structure and chemical treatments, affect the fatigue failure in natural fibres. Examples of controlling fibre fatigue life for different purposes are also presented. Knowledge of the fatigue behaviour of natural fibres will help product design and care.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PAN nanofibres were prepared via an electrospinning process. The effect of polymer concentration on the fibre morphology was studied. At a very dilute solution, no fibres were obtained in the electrospinning process. As the concentration increased, the fibre morphology evolved from a beads-on-string structure to a uniform fibre structure with increasing fibre diameters. However, when the same electrospinning process was conducted with the addition of a cationic surfactant, the formation of disconnected beads was prevented, and the number of beads-on-string structures reduced significantly. In addition, the presence of cationic surfactant reduced the average diameter of the electrospun PAN nanofibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polystyrene nanofibres were electrospun with the inclusion of cationic surfactants, dodecyltrimethylammonium bromide (DTAB) or tetrabutylammonium chloride (TBAC), in the polymer solution. A small amount of cationic surfactant effectively stopped the formation of beaded fibres during the electrospinning. The cationic surfactants were also found to improve the solution conductivity, but had no effect on the viscosity. Only DTAB had an effect on the surface tension of the polymer solution, the surface tension decreasing slightly with an increase in the concentration of DTAB.

The formation of beaded fibres was attributed to an insufficient stretch of the filaments during the whipping of the jet, due to a low charge density. Adding the cationic surfactants improved the net charge density that enhanced the whipping instability. The jet was stretched under stronger charge repulsion and at a higher speed, resulting in an exhaustion of the bead structure. In addition, a polymer/surfactant interaction was found in the polystyrene–DTAB solution system, while this interaction was not found in the polystyrene–TBAC system. The polymer/surfactant interaction led to the formation of thinner fibres than those formed in the absence of the interaction.

The effects of a non-ionic surfactant, Triton X-405, on the electrospun fibres were also studied. The addition of Triton X-405 did not eliminate the fibre beads, but reduced the bead numbers and changed the morphology. Triton X-405 slightly improved the solution conductivity, and had a minor effect on the surface tension, but no effect on the viscosity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports the preliminary findings on the morphology, chemical structure, antimicrobial and UV-screening properties of bamboo fibres. Bamboo fibres provide a very promising alternative to other natural fibres by virtue of their distinctive characteristics such as eco-friendly farming, inherent antimicrobial, UV-protective and highly· breathable properties. However, these novel properties are moslly claimed by fibre manufacturers, with little scientific evidence.  Moreover, those properties may largely depend on the manufacturing process, which is not widely disclosed by the manufacturers, Common manufacturing processes may require the use of a large amount of chemicals which would not make the product truly eco-friendly. Therefore, there is a strong need for unbiased laboratory experiments being conducted in a rigorous manner to elucidate the origin of those unique properties of bamboo fibres and to develop new processing methods to effectively utilise the properties in the final products. This research is aimed to prove the unique characteristics of bamboo fibres scientifically and to develop an efficient manufacturing process, in order to establish the place of bamboo fibres as a novel green material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project aimed to develop an understanding of the structure-property relationships of nanocomposite materials (injection moulded and fibres) based on nylon 6, MXD6 and their blends, with a layered silicate in combination with polyhedral oligomeric silsesquioxane nanoparticles and SEBS rubber particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staple fibre yarns vary quite markedly in linear density (tex) along their length and the degree to which twist redistributes from thick to thin places will affect the strength, torque and extension behaviour of the yarn. Theory suggests that twist along worsted yarns should vary as 1/(tex)2 if fibres were locked in the structure, whereas themean torque of worsted yarns reported in the literature implies that twist should be proportional to 1/tex. This article examines twist distribution in ring-spun marl yarns, down to 5 mm resolution, as a function of linear density measured using a high-resolution capacitive sensor. It is found for moderate twist-level worsted yarns that twist is approximately proportional to 1/(tex)1.6. The results and theory provide a guide as to the effect the observed large variations in linear density will have on yarn properties such as tenacity and torque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the structure-property relationships of epoxy nanocomposites when processing the materials under various conditions. A sonication technique, rapid heating rate and mechanical vibration during curing facilitated the dispersion of nanoclay in an epoxy resin. This led to the successful manufacture of fibre reinforced nanocomposites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hollow fibre membranes of mixed conducting perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were prepared via the combined phase inversion and sintering technique. The fibres were tested for air separation with a home-made reactor under the oxygen partial pressure gradient generated by the air/He streams. Some fibres were in situ activated by introducing methane in the He sweeping gas at high temperatures. The activated membranes with new morphology were created by transforming the inner densified surface layer to a porous structure. Compared to the original membranes, the activated gave appreciable higher oxygen fluxes. At 800 °C, the oxygen fluxes were increased by a factor of 10 after activation was carried out at 1000 °C for 1 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collection of images examining the microstructure of raw cocoons. The research investigates how the microstructure varies from one layer to another in the same cocoon and also from one cocoon variety to another. The research is being undertaken to study the structure and property relationships, specifically the antibacterial properties, photodegradability and mechanical strength of different cocoon components - fibre, sericin, and crystals. The aim is to understand the role of different cocoon components and their mechanism of protecting the pupa from extremes of climatic conditions, microorganisms, and other pathogens and predators. Scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to analyse the structure of the cocoons, fibre, and sericin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein structures of wool, treated in fabric form with ultrasonics for different time durations, were analysed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR), in comparison with the wool without ultrasonic treatment. Fabric water absorption and tensile properties were measured in addition to the fibre micro-structure analysis. It is shown that while the ultrasonic treatment had little effect on the fibre crystallinity, some chemical structures in the protein were altered to some extent during the process. Disruption of fibre internal waxy lipids upon ultrasonic treatment provided the fibres with increased water absorption. Protein chains in the macro fibrils were shown to be rearranged to a more regular and less flexible structure, as a result of the ultrasonic treatment. Fabric tensile tests showed an increased tenacity and a reduced extensibility to the ultrasonically treated fabric. Prolonged ultrasonic treatment, however, significantly reduced both fabric tenacity and extensibility.