26 resultados para fiber generator

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conventional electrospinning often uses a needle-like nozzle to produce nanofibers with a very low production rate. Despite the enormous application potential, needle electrospun nanofibers meet difficulties in broad applications in practice, due to the lack of an economic and efficient way to scale up the electrospinning process. Recently, needleless electrospinning has emerged as a new electrospinning mode and shown ability to produce nanofibers on large-scales. It has been established that the fiber generator, also referred to as “spinneret” in this paper, in needleless electrospinning plays a key role in scaling up the nanofiber production. This paper summarizes the recent advances in the development of needleless spinnerets and their influences on electrospinning process, nanofiber quality, and productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have demonstrated that polystyrene (PS) nanofibers having an ordered surface line texture can be produced on a large scale from a PS solution of acetone and N,N′-dimethylformamide (2/1, vol/vol) by a needleless electrospinning technique using a disc as fiber generator. The formation of the unusual surface feature was investigated and attributed to the voids formed on the surface of jets due to the fast evaporation of acetone at the early stage of electrospinning, and subsequent elongation and solidification turning the voids into ordered lines on fiber surface. In comparison with the nanofibers electrospun by a conventional needle electrospinning using the same solution, the disc electrospun fibers were finer with similar diameter distribution. The fiber production rate for the disc electrospinning was 62 times higher than that of the conventional electrospinning. Fourier transform infrared spectroscopy and X-ray diffraction measurements indicated that the PS nanofibers produced from the two electrospinning techniques showed no significant difference in chemical component, albeit slightly higher crystallinity in the disc spun nanofibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyacrylonitrile (PAN) nanofibers were prepared by a needleless electrospinning method using three rotating fiber generators, cylinder, disc and coil. The effects of the spinneret shape on the electrospinning process and resultant fiber morphology were examined. The disc spinneret needed the lowest voltage to initiate fiber formation, followed by the coil and cylinder. Compared to cylinder, the disc and coil produced finer fibers with narrower diameter distribution. The productivity of a coil was 23 g/hr, which was much larger than that of the cylinder spinneret having the same length and diameter. Finite elementary method was used to analyze the electric field. Stronger electric field was found to be formed on disc and coil surface, which concentrated on the disc circumferential edge and coil wire surface, respectively. For cylinder, the high intensity electric field was mainly concentrated on the end area. Concentrated electric field on the fiber generating surface could be used to explain the better electrospinning performance of coil, which may form a new concept for designing needleless electrospinning spinnerets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a spinning metal wire collector was employed to continuously collect polyacrylonitrile (PAN) nanofibers produced by a disc fiber generator and coil them around a polyethylene terephthalate (PET) yarn. The obtained composite yarns exhibited a core/shell structure (PET yarn/PAN nanofibers) with nanofibers orderly arranged on the surface of the PET yarn. The electric field analysis showed that the position of metal wire had insignificant effect on the formed electric field and high intensity electric field was formed at the disc circumferential area, which provided a constant electric field for the production of uniform nanofibers. The spinning solution, spinning speed of metal wire, and winding speed were found to play an important role in producing good quality nanofiber yarns, in terms of morphology, strength, and productivity. Pure nanofiber yarns were obtained after dissolving the core yarns in a proper solvent. This method has shown potential for the mass production of nanofiber yarns for industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial neural networks (ANN) are increasingly used to solve many problems related to pattern recognition and object classification. In this paper, we report on a study using artificial neural networks to classify two kinds of animal fibers: merino and mohair. We have developed two different models, one extracting nine scale parameters with image processing, and the other using an unsupervised artificial neural network to extract features automatically, which are determined in accordance with the complexity of the scale structure and the accuracy of the model. Although the first model can achieve higher accuracy, it requires more effort for image processing and more prior knowledge, since the accuracy of the ANN largely depends on the parameters selected. The second model is more robust than the first, since only raw images are used. Because only ordinary optical images taken with a microscope are employed, we can use the approach for many textile applications without expensive equipment such as scanning electron microscopy.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a simple fiber/tape composite that is easy to prepare and structurally more uniform. This novel composite provides a good alternative standard composite sample for experimental study of various phenomena and issues in fiber reinforced composite behaviors. Experimental results in the present work demonstrate how the fiber fragmentation, fiber-reinforcing effect and the gauge length effect can be successfully evaluated by using this novel composite specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effect of a high-fat diet on the expression of genes important for fat oxidation, the protein abundance of the transcription factors peroxisome proliferator-activated receptor (PPAR) isoforms α and γ, and selected enzyme activities in type I and II skeletal muscle. Research Methods and Procedures: Sprague-Dawley rats consumed either a high-fat (HF: 78% energy, n = 8) or high-carbohydrate (64% energy, n = 8) diet for 8 weeks while remaining sedentary. Results: The expression of genes important for fat oxidation tended to increase in both type I (soleus) and type II (extensor digitorum longus) fiber types after an HF dietary intervention. However, the expression of muscle type carnitine palmitoyltransferase I was not increased in extensor digitorum longus. Analysis of the gene expression of both peroxisome proliferator-activated receptor-γ coactivator and forkhead transcription factor O1 demonstrated no alteration in response to the HF diet. Similarly, PPARα and PPARγ protein levels were also not altered by the HF diet. Discussion: An HF diet increased the expression of an array of genes involved in lipid metabolism, with only subtle differences evident in the response within differing skeletal muscle fiber types. Despite changes in gene expression, there were no effects of diet on peroxisome proliferator-activated receptor-gamma coactivator and forkhead transcription factor O1 mRNA and the protein abundance of PPARα and PPARγ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effect of fiber dimensional irregularities on the tensile behavior of fiber bundles is modeled, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude. The specific stress-strain curves of fiber bundles and the constituent single fibers are obtained and compared. The results indicate that fiber diameter irregularity along fiber length has a significant effect on the tensile behavior of the fiber bundle. For a bundle of uniform fibers of different diameters, all constituent fibers will break simultaneously regardless of the fiber diameter. Similarly, if fibers within a bundle have the same pattern and level of diameter irregularity along fiber length, the fibers will break at the same time also regardless of the difference in average diameter of each fiber. In these cases, the specific stress and strain curve for the bundle overlaps with that of the constituent fibers. When the fiber bundle consists of single fibers with different levels of diameter irregularity, the specific stress-strain and load-elongation curves of the fiber bundle exhibit a stepped or “ladder” shape. The fiber with the highest irregularity breaks first, even when the thinnest section of the fiber is still coarser than the diameter of a very thin but uniform fiber in the bundle. This study suggests that fiber diameter irregularity along fiber length is a more important factor than the fiber diameter itself in determining the tensile behavior of a fiber bundle consisting of irregular fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acceptance/rejection approach is widely used in universal nonuniform random number generators. Its key part is an accurate approximation of a given probability density from above by a hat function. This article uses a piecewise constant hat function, whose values are overestimates of the density on the elements of the partition of the domain. It uses a sawtooth overestimate of Lipschitz continuous densities, and then examines all local maximizers of such an overestimate. The method is applicable to multivariate multimodal distributions. It exhibits relatively short preprocessing time and fast generation of random variates from a very large class of distributions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a prebiotic and modulate the colonic microbiota in humans needed investigation.

Aim of the study The present study aimed to determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis.

Design A total of 18 free-living healthy males between the ages of 24 and 64 years consumed a control diet and a LKFibre diet (containing an additional 17–30 g/day fiber beyond that of the control—incorporated into daily food items) for 28 days with a 28-day washout period in a single-blind, randomized, crossover dietary intervention design.
Methods Fecal samples were collected for 3 days towards the end of each diet and microbial populations analyzed by FISH analysis using 16S rRNA gene-based oligonucleotide probes targeting total and predominant microbial populations.

Results Significantly higher levels of Bifidobacterium spp. (P = 0.001) and significantly lower levels of the clostridia group of C. ramosum, C. spiroforme and C. cocleatum (P = 0.039) were observed on the LKFibre diet compared with the control. No significant differences between the LKFibre and the control diet were observed for total bacteria, Lactobacillus spp., the Eubacterium spp., the C. histolyticum/C. lituseburense group and the Bacteroides–Prevotella group.
Conclusions Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a range of carefully selected wool and cashmere yarns as well as their blends were used to examine the effects of fiber curvature and blend ratio on yarn hairiness. The results indicate that yarns spun from wool fibers with a higher curvature have lower yarn hairiness than yarns spun from similar wool of a lower curvature. For blend yarns made from wool and cashmere of similar diameter, yarn hairiness increases with the increase in the cashmere content in the yarn. This is probably due to the presence of increased proportion of the shorter cashmere fibers in the surface regions of the yarn, leading to increased yarn hairiness. A modified hairiness composition model is used to explain these results and the likely origin of leading and trailing hairs. This model highlights the importance of yarn surface composition on yarn hairiness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms α, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-α, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-α, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-α proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-α mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-α was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-α levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.