16 resultados para failure stability

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Customers often behave in the context of a group, with different behavior occurring in this context to that which transpires in an individual context. However, customer complaining behavior (CCB), including voice, negative word of mouth, in addition to that transmitted electronically, and exit, in a group setting has not been studied previously. A service failure during a group celebration at a restaurant and the pattern of CCB that ensues is examined. This is based on customers’ level of responsibility in restaurant selection on behalf of the group, the presence of an unconditional service guarantee, and the perceived stability of the failure. Findings suggest that customers are more inclined to exit when they have participated to a greater degree in choice and that the presence of an unconditional guarantee interacts with participation to influence negative word of mouth intentions. Perceived failure stability had the greatest influence on CCB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current investigations have shown that earthquakes can trigger significant damages of equipment, property infrastructure and environment. This is a persistent cause of economic loss for any country, especially for the loss of life. The conventional method for slope stability design is to utilize limit equilibrium method (LEM) in conjunction with the pseudo-static (PS) approach. However, the LEM has a significant drawback which is to determine the slip surface before factor of safety calculation. The numerical upper and lower bound limit analysis method employed in this paper can avoid this limitation. In this study, the presented slope stability evaluations considering earthquake effects based on the finite difference method will be discussed and compared with the results from the numerical limit analysis methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The truss bolt reinforcement system has been used in controlling the stability of underground excavations in severe ground conditions and cutter roof failure in layered rocks especially in coal mines. In spite of good application reports, working mechanism of this system is largely unknown and truss bolts are predominantly designed based on past experience and engineering judgement. In this study, the reinforcing effect of the truss bolt system on an underground excavation in layered rock is studied using non-linear finite element analysis. Different indicators are defined to evaluate the reinforcing effects of the truss bolt system. Using these indicators one can evaluate the effects of a reinforcing system on the deformation, loosened area, failure prevention, horizontal movement of the immediate layer, shear crack propagation and cutter roof failure of underground excavations. Effects of truss bolt on these indicators reveal the working mechanism of the truss bolt system. To illustrate the application of these indicators, a comparative study is conducted between three different truss bolt designs. It is shown that the design parameters of truss bolt systems, including tie-rod span, length, and angle of the bolts can have significant effects on the reinforcing capability of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Democratisation and consolidation of a political system encompass a range of complex challenges, for which effective leadership is pivotal. However, the skills that a leader requires to break through and introduce change are not necessarily the same as those needed to maintain stability. This article examines the case of Viktor Yushchenko as president of Ukraine following the Orange Revolution. The negotiated transfer of power from the previous semi-authoritarian regime rendered consolidation difficult by limiting opportunities for a complete break. Within the residual 'grey area', a number of actors continued to participate and create tension. The regime that emerged was characterised by political infighting and instability, leading to the defeat of candidates associated with the Orange Revolution in the 2010 presidential elections. This article argues that the inability to move towards a consolidated democratic political system was due to the failure of the transitional leader, rather than the political and institutional configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The probability of failure of a rock slope is generally estimated by using the Limit Equilibrium Method (LEM) in conjunction with a reliability analysis. Although the LEM is relatively simple and time efficient, recent studies have indicated that using the LEM may overestimate the factor of safety by 21%, when based on a non-linear failure criterion. Fortunately, the solutions presented by Li et al. (2008, 2009) can provide more accurate evaluations for rock slope stability as the numerical upper and lower bound limit analysis methods (2002a, 2002b, 2005) were employed. The advantages of these methods are used in this study to assess the rock slope probability of failure. The motivation is that with more accurate methods to evaluate the factor of safety, more economic designs can be performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses the finite element upper and lower bound limit analysis to assess the stability of slopes mostly found in embankment cases where frictional materials are filled on purely cohesive undrained clay. For comparison purposes, the commonly used stability assessment method, limit equilibrium method (LEM) is also employed. The final results for both methods are then presented in the form of comprehensive chart solutions for the convenience of practicing engineers during preliminary slope designs. The failure mechanism will also be discussed in this paper. Ultimately, it should be noted that finite element limit analysis method holds the upper hand as its prior assumptions are not required. Thus, the obtained failure mechanism from the slope stability analysis will be more realistic. Hence, it will provide a better understanding for the slope failure surface. Therefore, engineers should design more carefully when the LEM is applied to the slopes with frictional materials filled on purely cohesive undrained clay. © 2014 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that rock masses are inhomogeneous, discontinuous media composed of rock material and naturally occurring discontinuities such as joints, fractures and bedding planes. These features make any analysis very difficult using simple theoretical solutions. Generally speaking, back analysis technique can be used to capture some implicit parameters for geotechnical problems. In order to perform back analyses, the procedure of trial and error is generally required. However, it would be time-consuming. This study aims at applying a neural network to do the back analysis for rock slope failures. The neural network tool will be trained by using the solutions of finite element upper and lower bound limit analysis methods. Therefore, the uncertain parameter can be obtained, particularly for rock mass disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability charts for soil slopes, first produced in the first half of the twentieth century, continue to be used extensively as design tools, and draw the attention of many investigators. This paper uses finite-element upper and lower bound limit analysis to assess the short-term stability of slopes in which the slopematerial and subgrade foundation material have two distinctly different undrained strengths. The stability charts are proposed, and the exact theoretical solutions are bracketed to within 4.2% or better. In addition, results from the limit-equilibrium method (LEM) have been used for comparison. Differences of up to 20% were found between the numerical limit analysis and LEM solutions. It also shown that the LEM sometimes leads to errors, although it is widely used in practice for slope stability assessments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For general stability analysis of rock slopes, rock mass strength and rock mass disturbance are definitely should be considered. In addition, the impact of earthquakes must be taken into account. In fact, the rock mass strength is very difficult to be assessed which causes the difficulty of analysing rock slope stability. Therefore, an empirical failure criterion, the Hoek-Brown failure criterion, has been proposed. It is one of the most widely accepted approaches to estimate rock mass strength. The rock mass disturbance is important and was found having significant influence on evaluating rock slope stability, especially for rock slope with poor quality rock mass. In the Hoek-Brown failure criterion, the disturbance factor can represent the level of the rock mass disturbance which would provide a reasonable basis for estimating rock mass strength. This research will not only discuss the slope factor of safety, but also consider the influence of the seismic force on rock slope stability assessment using pseudo-static method. In practice, only horizontal seismic coefficient is used. Various magnitudes of the disturbance factor and recommended blasting damage zone thickness are also taken into account. The blasting damage zone thickness considered ranges from 0.5 to 2.5 times of slope height. The research results have potential to be extended and then sets of comprehensive stability charts can be provided for the rock slope stability evaluations. They will be convenient tools for practising engineers. In this study, finite element upper bound and lower bound limit analysis methods are employed. Their applicability has been investigated in some previous studies. The differences between upper bound and lower bound solutions are less than ±10% which would provide reasonable and acceptable range for rock slope stability safety factor estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the stability of fill slopes often found in embankment cases where frictional fill materials are placed on purely cohesive undrained clay with increasing strength. By using finite element upper and lower bound limit analysis for this investigation, the limit load can be truly bounded. It is known that two-dimensional analysis yields a more conservative result due to plain strain condition when compared to three-dimensional analysis. Therefore, this paper will focus on three-dimensional (3D) slope stability analysis and for comparison purposes two-dimensional analysis results will be employed. In fact, the final results are presented in the form of comprehensive chart solutions for the convenience of practicing engineers during preliminary slope design. The failure mechanism will also be discussed in order to further illustrate the situation during failure. It should be highlighted that the failure mechanisms are obtained through the numerical method itself and no prior assumptions are required, therefore, are more realistic and able to provide a better understanding for the slope failure surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional slope stability analyses have commonly been based on a deterministic approach. Various deterministic-based analysis methods developed to date can assess the stability of a given slope using the factor of safety. However, it has been strongly debated that the use of only the factor of safety does not explicitly account for the uncertainties in soil parameters. In light of this, this paper uses the finite element limit analysis methods and conducts a probabilistic-based analysis of fill slope for the specific case of two-layered undrained clay. Results obtained show that slopes with large variations in soil properties may present an extremely high risk of a slope failure and this cannot be known if only a deterministic-based analysis is performed. Thus, this shows that more soil investigations can be performed to reduce the variation of the soil properties thereby reducing the risk of a slope failure. Different probabilistic charts based on different coefficients of variation in soil properties are provided in this paper. This study demonstrates that the finite element limit analysis methods can be applied in a probabilistic analysis.