2 resultados para evolution, methylation, Alu repeat

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae WD-40 repeat protein Swd2p associates with two functionally distinct multiprotein complexes: the cleavage and polyadenylation factor (CPF) that is involved in pre-mRNA and snoRNA 3′ end formation and the SET1 complex (SET1C) that methylates histone 3 lysine 4. Based on bioinformatic analysis we predict a seven-bladed β-propeller structure for Swd2p proteins. Northern, transcriptional run-on and in vitro 3′ end cleavage analyses suggest that temperature sensitive swd2 strains were defective in 3′ end formation of specific mRNAs and snoRNAs. Protein–protein interaction studies support a role for Swd2p in the assembly of 3′ end formation complexes. Furthermore, histone 3 lysine 4 di-and tri-methylation were adversely affected and telomeres were shortened in swd2 mutants. Underaccumulation of the Set1p methyltransferase accounts for the observed loss of SET1C activity and suggests a requirement for Swd2p for the stability or assembly of this complex. We also provide evidence that the roles of Swd2p as component of CPF and SET1C are functionally independent. Taken together, our results establish a dual requirement for Swd2p in 3′ end formation and histone tail modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of Devil Facial Tumour Disease (DFTD), a highly contagious cancer, is driving Tasmanian devils (Sarcophilus harrisii) to extinction. The cancer is a genetically and chromosomally stable clonal cell line which is transmitted by biting during social interactions. In the present study, we explore the Devil Facial Tumour (DFT) epigenome and the genes involved in DNA methylation homeostasis. We show that tumour cells have similar levels of methylation to peripheral nerves, the tissue from which DFTD originated. We did not observe any strain or region-specific epimutations. However, we revealed a significant increase in hypomethylation in DFT samples over time (p < 0.0001). We propose that loss of methylation is not because of a maintenance deficiency, as an upregulation of DNA methyltransferase 1 gene was observed in tumours compared with nerves (p < 0.005). Instead, we believe that loss of methylation is owing to active demethylation, supported by the temporal increase in MBD2 and MBD4 (p < 0.001). The implications of these changes on disease phenotypes need to be explored. Our work shows that DFTD should not be treated as a static entity, but rather as an evolving parasite with epigenetic plasticity. Understanding the role of epimutations in the evolution of this parasitic cancer will provide unique insights into the role of epigenetic plasticity in cancer evolution and progression in traditional cancers that arise and die with their hosts.