6 resultados para etoposide

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We and others have shown that the copper transporters ATP7A and ATP7B play a role in cellular resistance to cisdiaminedichloroplatinum (II) (CDDP).  In this study, we found that ATP7A transfection of Chinese hamster ovary  cells (CHOK1) and fibroblasts isolated from Menkes disease patients  enhanced resistance not only to CDDP but also to various anticancer drugs, such as vincristine, paclitaxel, 7-ethyl-10- hydroxy-camptothecin (SN-38),  etoposide, doxorubicin, mitoxantron, and 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11). ATP7A preferentially localized
doxorubicin fluorescence to the Golgi apparatus in contrast to the more intense nuclear staining of doxorubicin in the parental cells. Brefeldin A   partially and monensin completely altered the distribution of doxorubicin to the nuclei in the ATP7A-expressing cells. ATP7A expression also enhanced the efflux rates of doxorubicin and SN-38 from cells and increased the uptake of SN-38 in membrane vesicles. These findings strongly suggested that   ATP7A confers multidrug resistance to the cells by compartmentalizing drugs in the Golgi apparatus and by enhancing efflux of these drugs, and the trans-Golgi network has an important role of ATP7A-related drug resistance. ATP7A was expressed in 8 of 34 (23.5%) clinical colon cancer specimens but not in the adjacent normal epithelium. Using the histoculture drug response assay that is useful for the prediction of drug sensitivity of clinical cancers, ATP7A-expressing colon cancer cells were significantly more  resistant to SN-38 than ATP7Anegative cells. Thus, ATP7A confers  resistance to various anticancer agents on cancer cells and might be a good index of drug resistance in clinical colon cancers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included.
Methods HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods.
Results Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine.
Conclusions Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Goblet cell appendiceal carcinoids represent rare tumors that exhibit histologic features of both adenocarcinomas and neuroendocrine tumors. We present the long-term results of a series of 15 patients, focusing on clinical manifestations, diagnosis, and management.

Methods: Eight male and seven female patients (median age, 52.8 years) were included. Final diagnosis was confirmed by histology. Patients were evaluated clinically, biochemically, and radiologically every four months. Median follow-up was 30 months.

Results: The majority of patients (7/15) presented with symptoms compatible with acute appendicitis. Right hemicolectomy was performed in all except one, who subsequently developed metastases. Three patients had metastases at previous diagnosis. Plasma chromogranin-A was slightly elevated in two of them, while urinary 5-hydroxy-indol-acetic acid was normal. 111Indium-labeled octreotide scintigraphy was positive only in two of the four patients with metastases. Ki67 index was greater than 20 percent in all of them, while in only one with local tumor. Combination chemotherapy with either cisplatin plus etoposide or with 5-fluorouracil, cisplatin, and streptozotocin was administered to all patients with metastases resulting in temporary stabilization of disease. Twelve patients are alive, while three died of their disease 9, 13, and 14 months after diagnosis.

Conclusions: The diagnostic value of chromogranin-A, urinary 5-hydroxy-indol-acetic acid, and 111Indium-labeled octreotide scintigraphy seems to be limited in these tumors. Ki67 index appears to predict tumor behavior. Right hemicolectomy may reduce the risk of developing metastases. Chemotherapy may have efficacy in metastatic disease, however, more data are required to determine this and the optimal regimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1) and multidrug resistance protein 1 (MRP1/ABCC1) play an important role in the extrusion of drugs from the cell and their overexpression can be a cause of failure of anticancer and antimicrobial chemotherapy. Recently, the mouse P-gp/Abcb1a structure has been determined and this has significantly enhanced our understanding of the structure-activity relationship (SAR) of mammalian ABC transporters. This paper highlights our current knowledge on the structural and functional properties and the SAR of human MRP1/ABCC1. Although the crystal structure of MRP1/ABCC1 has yet to be resolved, the current topological model of MRP1/ABCC1 contains two transmembrane domains (TMD1 and TMD2) each followed by a nucleotide binding domain (NBD) plus a third NH2-terminal TMD0. MRP1/ABCC1 is expressed in the liver, kidney, intestine, brain and other tissues. MRP1/ABCC1 transports a structurally diverse array of important endogenous substances (e.g. leukotrienes and estrogen conjugates) and xenobiotics and their metabolites, including various conjugates, anticancer drugs, heavy metals, organic anions and lipids. Cells that highly express MRP1/ABCC1 confer resistance to a variety of natural product anticancer drugs such as vinca alkaloids (e.g. vincristine), anthracyclines (e.g. etoposide) and epipodophyllotoxins (e.g. doxorubicin and mitoxantrone). MRP1/ABCC1 is associated with tumor resistance which is often caused by an increased efflux and decreased intracellular accumulation of natural product anticancer drugs and other anticancer agents. However, most compounds that efficiently reverse P-gp/ABCB1-mediated multidrug resistance have only low affinity for MRP1/ABCC1 and there are only a few effective and relatively specific MRP1/ABCC1 inhibitors available. A number of site-directed mutagenesis studies, biophysical and photolabeling studies, SAR and QSAR, molecular docking and homology modeling studies have documented the role of multiple residues in determining the substrate specificity and inhibitor selectivity of MRP1/ABCC1. Most of these residues are located in the TMs of TMD1 and TMD2, in particular TMs 4, 6, 7, 8, 10, 11, 14, 16, and 17, or in close proximity to the membrane/cytosol interface of MRP1/ABCC1. The exact transporting mechanism of MRP1/ABCC1 is unclear. MRP1/ABCC1 and other multidrug transporters are front-line mediators of drug resistance in cancers and represent important therapeutic targets in future chemotherapy. The crystal structure of human MRP1/ABCC1 is expected to be resolved in the near future and this will provide an insight into the SAR of MRP1/ABCC1 and allow for rational design of anticancer drugs and potent and selective MRP1/ABCC1 inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoblastoma (RB), a malignant tumour of the eye arising from developing retina, is the most frequent primary intraocular malignancy of childhood. Its primary management with chemotherapy involves combination regimen of etoposide, vincristine and carboplatin and intra vitreal chemotherapy using melphalan when vitreous seeds develop. Radiotherapy is another effective mode in treating RB. We recently explored the notion if radiotherapy in RB can be mediated via Sodium Iodide Symporter (NIS), an intrinsic membrane glycoprotein which is a key regulator of iodide access to thyroid gland. Its expression has been exploited successfully for diagnostic imaging and molecular radionuclide-based therapy of thyroid cancer. We determined that NIS is expressed endogenously in RB tumour tissues, and in retinoblastoma cell lines Y79 and Weri-Rb-1, and therefore made an attempt to enhance the endogenously low expression of NIS protein in both Y79 and Weri-Rb-1 cells. Here we report about the potential of bovine lactoferrin (bLf) which is a known chemo preventive and emerging safe anti-cancer bio drug, as well as a natural transcriptional activator of genes, to enhance the endogenous expression of NIS in Y79 and Weri-Rb-1 cells. Real time PCR revealed that both cell lines express mRNA of lactoferrin receptors while flow cytometry and confocal microscopy showed the cells efficiently internalize bLf which upregulates NIS expression. These findings highlight an important step that could be taken towards the development of less harmful approaches for the treatment of RB by employing natural supplement bLf (with its clinically proven safe profile), and warrants further studies in future, focussing on enhancing NIS expression in RB cells and NIS functional assays in these cells.