78 resultados para enzyme phosphorylation

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation and chronically by protein synthesis. No studies have systematically investigated the phosphorylation of these sites in vivo in response to stressors. We specifically investigated the phosphorylation of TH occurring within the first 24 h in response to the social defeat stress in the rat adrenal, the locus coeruleus, substantia nigra and ventral tegmental area. Five groups were investigated; home cage control (HCC), two groups that underwent social defeat (SD+) which were sacrificed either 10 min or 24 h after the end of the protocol and two groups that were put into the cage without the resident being present (SD−) which were sacrificed at time points identical to the SD+. We found at 10 min there were significant increases in serine 40 and 31 phosphorylation levels in the locus coeruleus in SD+ compared to HCC and increases in serine 40 phosphorylation levels in the substantia nigra in SD+ compared to SD−. We found at 24 h there were significant increases in serine 19 phosphorylation levels in the ventral tegmental area in SD+ compared to HCC and decreases in serine 40 phosphorylation levels in the adrenal in SD+ compared to SD−. These findings suggest that the regulation of TH phosphorylation in different catecholamine-producing cells varies considerably and is dependent on both the nature of the stressor and the time at which the response is analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic arsenic (jAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (As111) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of As111 for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamatecysteine lyase (GeL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of jAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the in vivo effects of resistance exercise on translational control in human skeletal muscle, we determined the phosphorylation of AMP-activated kinase (AMPK), eukaryotic initiation factor 4E-binding protein (4E-BP1), p70/p85-S6 protein kinase (S6K1), and ribosomal S6 protein (S6). Furthermore, we investigated whether changes in the phosphorylation of S6K1 are muscle fiber type specific. Eight male subjects performed a single high-intensity resistance exercise session. Muscle biopsies were collected before and immediately after exercise and after 30 and 120 min of postexercise recovery. The phosphorylation statuses of AMPK, 4E-BP1, S6K1, and S6 were determined by Western blotting with phospho-specific and pan antibodies. To determine fiber type-specific changes in the phosphorylation status of S6K1, immunofluorescence microscopy was applied. AMPK phosphorylation was increased approximately threefold immediately after resistance exercise, whereas 4E-BP1 phosphorylation was reduced to 27 ± 6% of preexercise values. Phosphorylation of S6K1 at Thr421/Ser424 was increased 2- to 2.5-fold during recovery but did not induce a significant change in S6 phosphorylation. Phosphorylation of S6K1 was more pronounced in the type II vs. type I muscle fibers. Before exercise, phosphorylated S6K1 was predominantly located in the nuclei. After 2 h of postexercise recovery, phospho-S6K1 was primarily located in the cytosol of type II muscle fibers. We conclude that resistance exercise effectively increases the phosphorylation of S6K1 on Thr421/Ser424, which is not associated with a substantial increase in S6 phosphorylation in a fasted state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AS160 is an Akt substrate of 160 kDa implicated in the regulation of both insulin- and contraction-mediated GLUT4 translocation and glucose uptake. The effects of aerobic exercise and subsequent insulin stimulation on AS160 phosphorylation and the binding capacity of 14-3-3, a novel protein involved in the dissociation of AS160 from GLUT4 vesicles, in human skeletal muscle are unknown. Hyperinsulinemic-euglycemic clamps were performed on seven men at rest and immediately and 3 h after a single bout of cycling exercise. Skeletal muscle biopsies were taken before and after the clamps. The insulin sensitivity index calculated during the final 30 min of the clamp was 8.0 ± 0.8, 9.1 ± 0.5, and 9.2 ± 0.8 for the rest, postexercise, and 3-h postexercise trials, respectively. AS160 phosphorylation increased immediately after exercise and remained elevated 3 h after exercise. In contrast, the 14-3-3 binding capacity of AS160 and phosphorylation of Akt and AMP-activated protein kinase were only increased immediately after exercise. Insulin increased AS160 phosphorylation and 14-3-3 binding capacity and insulin receptor substrate-1 and Akt phosphorylation, but the response to insulin was not enhanced by prior exercise. In conclusion, the 14-3-3 binding capacity of AS160 is increased immediately after acute exercise in human skeletal muscle, but this is not maintained 3 h after exercise completion despite sustained AS160 phosphorylation. Insulin increases AS160 phosphorylation and 14-3-3 binding capacity, but prior exercise does not appear to enhance the response to insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro studies have demonstrated that angiotensin II (ANG II) induces adipocyte hyperplasia and hypertrophy. The aim of the present study was to determine the effect of angiotensin-converting enzyme inhibition on body weight, adiposity and blood pressure in Sprague–Dawley rats. From birth half of the animals (n = 15) were given water to drink, while the remainder were administered perindopril in their drinking water (2 mg/kg/day). Food intake, water intake and body weight were measured weekly. Blood pressure was measured by tail cuff plethysmography at 11-weeks. Body fat content and distribution were assessed using dual energy X-ray absorptiometry and Magnetic Resonance Imaging at 12 weeks. Animals administered with perindopril had a body fat proportion that was half that of controls. This was consistent with, but disproportionately greater than the observed differences in food intake and body weight. Perindopril treatment completely removed hypertension. We conclude that the chronic inhibition of ANG II synthesis from birth specifically reduces the development of adiposity in the rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of reduced acetylcarnitine availability on oxidative metabolism during the transition from rest to steady-state exercise. Eight male subjects completed two randomised exercise trials at 68 % of the peak rate of O2 uptake (V̇O2,peak). On one occasion subjects ingested 1 g (kg body mass)−1 glucose 75 min prior to exercise (CHO), whereas the other trial acted as a control (CON). Muscle samples were obtained pre- and 75 min post-ingestion, and following 1 and 10 min of exercise. Plasma glucose and insulin were elevated (P < 0.05), and plasma free fatty acids (FFA) were lower at the onset of exercise in CHO. Acetylcarnitine (CON, 4.8 ± 1.8; CHO, 1.5 ± 0.9 mmol (kg dry mass (d.m.))−1, P < 0.05) and acetyl CoA (CON, 13.2 ± 2.3; CHO, 6.3 ± 0.6 μmol (kg d.m.)−1, P < 0.05) were lower at rest, whereas pyruvate dehydrogenase activation (PDHa) was greater in CHO compared with CON (CON, 0.78 ± 0.07; CHO, 1.44 ± 0.19 mmol min−1 (kg wet mass (w.m.))−1). Respiratory exchange ratio (RER) was significantly elevated during exercise in CHO. The acetyl groups increased at similar rates at the onset of exercise (1 min) and there was no difference in substrate phosphorylation as determined from lactate accumulation and phosphocreatine degradation between trials. Subsequently, oxidative metabolism during the transition from rest to steady-state exercise was not affected by prior carbohydrate ingestion. Although exercise resulted in the rapid activation of PDH in both trials, PDHa was greater at 1 min in CHO (CON, 2.36 ± 0.22; CHO, 2.91 ± 0.18 mmol min−1 (kg w.m.)−1). No differences in muscle metabolite levels and PDHa were observed after 10 min of moderate exercise between trials. In summary, at rest, carbohydrate ingestion induced multiple metabolic changes which included decreased acetylcarnitine availability and small increases in PDHa. The prior changes in PDHa and acetylcarnitine availability had no effect on substrate phosphorylation and oxidative metabolism at the onset of exercise. These data suggest that acetylcarnitine availability is unlikely to be the site of metabolic inertia during the transition from rest to steady-state moderate intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the effect of glycogen availability and contraction on intracellular signaling and IL-6 gene transcription, eight males performed 60 min of exercise on two occasions: either with prior ingestion of a normal (Con) or low carbohydrate (LCHO) diet that reduced pre-exercise muscle glycogen content. Muscle biopsies were obtained and analyzed for IL-6 mRNA. In addition, nuclear proteins were isolated from the samples and analyzed for the mitogen- activated protein kinases (MAPK) c-jun amino-terminal kinase (JNK) 1 and 2 and p38 MAPK. Nuclear fractions were also analyzed for the phosphorylated forms of JNK (p-JNK) and p38 MAPK (p-p38 MAPK) and the abundance of the nuclear transcription factors nuclear factor of activated T cells (NFAT) and nuclear factor kappa-β (NF-κβ). No differences were observed in the protein abundance of total JNK 1/2, p38 MAPK, NFAT, or NF-κβ before exercise, but the nuclear abundance of p-p38 MAPK was higher (P<0.05) in LCHO. Contraction resulted in an increase (P<0.05) in nuclear p-JNK 1/2, but there were no differences when comparing CON with LCHO. The fold increase in IL-6 mRNA with contraction was potentiated (P<0.05) in LCHO. A correlation between pre-exercise nuclear phosphorylated p38 MAPK and contraction-induced fold increase in IL-6 mRNA was performed, revealing a highly significant correlation (r=0.96; P<0.01). We next incubated L6 myotubes in ionomycin (a compound known to induce IL-6 mRNA) with or without the pyridinylimidazole p38 MAPK inhibitor SB203580. Treatments did not affect total nuclear p38 MAPK, but ionomycin increased (P<0.05) both nuclear p-p38 MAPK and IL-6 mRNA. The addition of SB203580 to ionomycin decreased (P<0.05) nuclear p-p38 MAPK and totally abolished (P<0.05) the ionomycin- induced increase in IL-6 mRNA. These data suggest that reduced carbohydrate intake that results in low intramuscular glycogen leads to phosphorylation of p38 MAPK at the nucleus. Furthermore, phosphorylation of p38 MAPK in the nucleus appears to be an upstream target for IL-6, providing new insights into the regulation of IL-6 gene transcription.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione S-transferases (GSTs) are the major detoxifying Phase II enzyme for eliminating electrophilic compounds. Mutations in GSTM1, GSTP1 and GSTT1 in Caucasian and GSTA1 in Chinese have been found to reduce enzyme activity. However, data on the impact of common genetic polymorphisms of GSTM1 and GSTP1 on enzyme activity in Chinese is lacking. This study aimed to investigate the effect of common GSTP1 and GSTM1 polymorphisms on erythrocyte GST activity in healthy Chinese (n = 196). GSTM1 null mutation (GSTM1*0) was analyzed by a PCR-Multiplex procedure, whereas GSTP1 313A → G polymorphism (resulting in Ile105Val at codon 105) was analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis. Erythrocyte GST activity was measured using 1-chloro-2,4-dinitro-bezene (CDNB) as the model substrate. The frequency of GSTM1 null genotype was 54.3% and the frequency of GSTP1-Ile/Ile, -Ile/Val, and -Val/Val genotype was 60.7%, 35.2% and 4.1%, respectively, with a frequency of 21.7% for the 105 valine allele. Age, gender and smoking did not significantly affect the erythrocyte GST activities. The mean erythrocyte GST enzyme activity for GSTP1*-Ile/Val genotype group (3.53 ± 0.63 U/g Hb) was significantly lower than that for subjects with GSTP1-Ile/Ile genotype (4.25 ± 1.07 U/g Hb, P = 0.004), while subjects with the GSTP1-Val/Val genotype had the lowest enzyme activity (2.44 ± 0.67 U/g Hb). In addition, the GST activity in carriers of GSTM1*0/GSTP1-Ile/Ile was significantly higher than that of subjects inherited GSTM1*0/GSTP1-Ile/Val or GSTM1*0/GSTP1-Val/Val. However, there is no association between GSTM1 null mutation and reduced enzyme activity. GSTP1 codon 105 mutation led to reduced erythrocyte GST activity in Chinese. A combined GSTP1 and GSTM1 null mutations also resulted in significantly reduced GST activity. Further studies are needed to explore the clinical implications of GSTM1 and GSTP1 polymorphisms.