68 resultados para energy-protein supplementation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residents from high level (nursing homes) and low-level care facilities (hostel) being served the three common diet texture modifications (full diet, soft-minced diet and pureed diet) were assessed. Individual plate waste was estimated at three meals on one day. Fifty-six males and 156 females, mean age 82.9+/-9.5 (SD) years, of which 139 lived in nursing homes (NH) and 76 in hostels (H) were included. Mean total energy served from meals was 5.3 MJ/day, 5.1 to 5.6 MJ/day, 95% confidence intervals (CI), in NH which was less than in H, 5.9 MJ/day (CI 5.6 to 6.2 MJ/day) (P=0.007). Protein and calcium intakes were lower in NH, 44.5g (CI 41.5 to 47.5g), 359.0mg (CI 333.2 to 384.8mg), versus 50.5g (CI 46.6 to 54.3g), 480.5mg (CI 444.3 to 516.7mg) in H (P=0.017, P<0.001 respectively). There was no difference in nutrient/energy ratios, except for protein/energy, which was higher in NH 11.7 (CI 11.3 to 12.2) than in H 9.8 (CI 9.4 to 10.3) (P<0.001). Ability to self-feed had no significant effect on nutrient intakes in NH. The self fed group (N=63) had the following nutrient intakes: energy 4.0 MJ (CI 3.6 to 4.3 MJ), protein 44.6g (CI 40.3 to 48.9g), calcium 356.9mg (CI 316.3 to 397.4mg), fibre 14.9g (CI 13.2 to 16.5g). The assisted group (N=64) had the following nutrient intakes: energy 3.9MJ (CI 3.6 to 4.2MJ), protein 46.0g (CI 40.7 to 49.6), calcium 361.9mg (CI 327.8 to 396.1mg), fibre 14.9g (CI 13.2 to 16.1g). Of NH classified as eating impaired, 36% received no assistance with feeding and had lower intakes of protein 37.8g (CI 33.0 to 42.1g) compared to those receiving some assistance 46.1g (CI 41.3 to 50.9g) (P=0.026). Reduced energy intake accounted for the differences in nutrient intakes between nursing homes and hostels, except for protein. Strategies to effectively monitor nutrient intakes and to identify those with eating impairment are required in order to ensure adequate nutrition of residents in nursing homes and hostels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The striated muscle activator of Rho signalling (STARS) pathway is suggested to provide a link between external stress responses and transcriptional regulation in muscle. However, the sensitivity of STARS signalling to different mechanical stresses has not been investigated. In a comparative study, we examined the regulation of the STARS signalling pathway in response to unilateral resistance exercise performed as either eccentric (ECC) or concentric (CONC) contractions as well as prolonged training; with and without whey protein supplementation. Skeletal muscle STARS, myocardian-related transcription factor-A (MRTF-A) and serum response factor (SRF) mRNA and protein, as well as muscle cross-sectional area and maximal voluntary contraction, were measured. A single-bout of exercise produced increases in STARS and SRF mRNA and decreases in MRTF-A mRNA with both ECC and CONC exercise, but with an enhanced response occurring following ECC exercise. A 31% increase in STARS protein was observed exclusively after CONC exercise (P < 0.001), while pSRF protein levels increased similarly by 48% with both CONC and ECC exercise (P < 0.001). Prolonged ECC and CONC training equally stimulated muscle hypertrophy and produced increases in MRTF-A protein of 125% and 99%, respectively (P < 0.001). No changes occurred for total SRF protein. There was no effect of whey protein supplementation. These results show that resistance exercise provides an acute stimulation of the STARS pathway that is contraction mode dependent. The responses to acute exercise were more pronounced than responses to accumulated training, suggesting that STARS signalling is primarily involved in the initial phase of exercise-induced muscle adaptations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of energy or protein supplementation or energy restriction on cashmere growth was studied in 35 highly productive cashmere wether goats. The goats were shorn on 3 December and randomly allocated to 3 levels of energy intake: M, goats fed to maintain liveweight; 0.8M, goats fed to lose 5 kg liveweight from December to April and then fed ad libitum; and >M, goats fed to gain liveweight. Nested within >M were ADLIB (goats offered feed ad libitum), and 1.25M and l.5M (goats fed M plus 25 or 50% of the difference in mean intake between M and ADLIB). The metabolisable energy requirement to maintain liveweight was 250 kJ kg-0.75 day-1 but to maintain body condition (l.25M) it was 3 12 kJ kg-0.75 day-1. Goats fed 0.8M had a mean intake of 0.68M and lost 26 g day-1 liveweight until April, but when fed ad libitum consumed 2.15M in June and grew rapidly in late autumn and winter at 93 g day-1. Goats fed ADLIB consumed 2.30M in February and gained 87 g day-1 from December to February, but intake declined to 1.61 M in June and they gained 20 g day-1 from April to June. Cashmere growth and fibre diameters of fleeces shorn on 17 June of goats fed >M (221g, 17.69 pm) were significantly greater (P< 0.02) than those of goats fed 0.8M (146 g, 16.67 ¦m), with levels of M-fed goats being intermediate. Within >M, there were no significant differences in cashmere growth. Protein supplementation within M (27 or 54 g day -1 formaldehyde- treated casein) resulted in 40% more wool growth in sheep (P<0.001), but no increase in cashmere or hair growth in goats. Goats fed ADLIB had significantly reduced cashmere yields (P < 0.05) and grew more hair (P<0.05) than did goats in other treatments. About 4 weeks after energy supplementation, fibre diameter of previously energy-deprived goats increased (P< 0.01). Midside patches indicated that energy-deprived goats, which lost liveweight, diverted nutrients preferentially to cashmere growth, while goats fed ADLIB partitioned nutrients towards hair growth. To maximise cashmere growth, supplementary energy should be supplied to avoid liveweight loss from December to April. Goats that had small (1-2 kg) liveweight gains and maintained body condition achieved near maximal levels of cashmere growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To provide a concise summary of field and laboratory methods for the measurement of dietary intake with particular reference to the assessment of energy and protein intake and to the pitfalls and difficulties that may be encountered in practice when implementing the methods both in the field and under laboratory conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this review, we discuss the effect of increased and decreased loading and nutrition deficiency on muscle and bone mass and strength (and bone length and architecture) independently and combined. Both exercise and nutrition are integral components of the mechanostat model but both have distinctly different roles. Mechanical strain imparted by muscle action is responsible for the development of the external size and shape of the bone and subsequently the bone strength. In contrast, immobilization during growth results in reduced growth in bone length and a loss of bone strength due to large losses in bone mass (a result of endosteal resorption in cortical bone and trabecular thinning) and changes in geometry (bone shafts do not develop their characteristic shape but rather develop a rounded default shape). The use of surrogate measures for peak muscle forces acting on bone (muscle strength, size, or mass) limits our ability to confirm a cause-and-effect relationship between peak muscle force acting on bone and changes in bone strength. However, the examples presented in this review support the notion that under adequate nutrition, exercise has the potential to increase peak muscle forces acting on bone and thus can lead to a proportional increase in bone strength. In contrast, nutrition alone does not influence muscle or bone in a dose-dependent manner. Muscle and bone are only influenced when there is nutritional deficiency – and in this case the effect is profound. Similar to immobilization, the immediate effect of malnutrition is a reduction in longitudinal growth. More specifically, protein and energy malnutrition results in massive bone loss due to endosteal resorption in cortical bone and trabecular thinning. Unlike loading however, there is indirect evidence that severe malnutrition when associated with menstrual dysfunction can shift the mechanostat set point upward, thus leading to less bone accrual for a given amount of bone strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pressure ulcers are serious problems within hospital and aged care settings and are associated with adverse health outcomes and high treatment costs. Because of a high incidence of pressure ulcers in the health system, attention is now being directed to not just preventing, but also more effectively treating them. Nutrition plays a fundamental part in wound healing, with malnutrition, dehydration and recent weight loss identified as independent risk factors for the development of pressure ulcers. While the optimal nutrient intake to promote wound healing is unknown, increased needs for energy, protein, zinc and vitamins A, C and E have been documented. There is reasonable evidence to show that nutritional support, mostly by high-protein oral nutritional supplements, is effective in significantly reducing the incidence of pressure ulcers in at-risk patients by 25%. Intervention studies using high-protein or specialised disease-specific nutritional supplements support a trend to increased healing of established pressure ulcers. Such specialised supplements are typically based on defined amounts of arginine, vitamin C and zinc. Mechanisms by which nutritional support can aid in pressure ulcer prevention and healing are likely related to addressing macro- and/or micro-nutrient deficiencies arising from either poor oral intake or increased nutrient requirements related to the wound healing process. With much more research still to be done in this area, nutrition support appears an efficacious and costeffective adjunct to current medical and nursing approaches in the prevention and treatment of pressure ulcers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

While physical activity, energy restriction and weight loss are the cornerstone of type 2 diabetes management, less emphasis is placed on optimizing skeletal muscle mass. As muscle is the largest mass of insulin-sensitive tissue and the predominant reservoir for glucose disposal, there is a need to develop safe and effective evidence-based, lifestyle management strategies that optimize muscle mass as well as improve glycaemic control and cardiometabolic risk factors in people with this disease, particularly older adults who experience accelerated muscle loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results of a 56-day experiment on juvenile Murray cod, Maccullochella peelii peelii, an Australian native fish with a high aquaculture potential, of mean weight 14.9 ± 0.04 g, fed with five experimental diets, one a series of 40% protein content and lipid levels of 10, 17 and 24% (P40L10, P40L17 and P40L24), and another of 50% protein and 17 and 24% (P50L17 and P50L24) lipid are presented. The specific growth rate (SGR) (% day−1) of fish maintained on different diets ranged from 1.18 to 1.41, and was not significantly different between dietary treatments, except P40L10 and the rest. However, there was a general tendency for SGR to increase with increasing dietary lipid content at both protein levels. The food conversion ratio (FCR) for the 40% protein series diets were poorer compared with those of the 50% protein diets, and the best FCR of 1.14 was observed with the P50L17 diet. The protein efficiency ratio (PER), however, was better in fish reared on low protein diets. The net protein utilization (NPU) also did not differ significantly (P > 0.05) in relation to dietary treatment. As in the case of PER the highest NPU was observed in Murray cod reared on diet P40L24 and the lowest in fish fed with diet P50L24. The carcass lipid content reflected that of the diets, when significant increases in the lipid content was observed in relation to dietary lipid content at both protein levels. However, body muscle lipid content did not increase with increasing dietary lipid content, and was significantly lower than in the whole body. The fatty acids found in highest concentration amongst the saturates, monoenes and polyunsaturates (PUFAs) were 16 : 0, 18 : 1n-9 and 22 : 6n-3, respectively, and each of these accounted for more than 60% of each of the group's total. The muscle fatty acid content was affected by the dietary lipid content; for example the total amount (in μg mg−1 lipid) of monoenes ranged from 72 ± 5.1 (P40L10) to 112 ± 10 (P40L24) and 112 ± 2.8 (P50L17) to 132 ± 11.8 (P50L24) and the n-6 series fatty acids increased with increasing dietary lipid content, although not always significant. Most notably, 18 : 2n-6 increased with the dietary lipid level in both series of diets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.