14 resultados para energy transfer efficiency

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

* 1
Environmental variation influences food abundance and availability, which is reflected in the reproductive success of top predators. We examined maternal expenditure, offspring mass and condition for Weddell seals in 2 years when individuals exhibited marked differences in these traits.
* 2
For females weighing 355 kg there was a positive relationship between maternal post-partum mass (MPPM) and lactation length, but below this there was no relationship, suggesting that heavier females were able to increase lactation length but lighter females were restricted to a minimum lactation period of 33 days.
* 3
Overall, females were heavier in 2002, but in 2003 shorter females were lighter than similar-sized females in 2002 suggesting that the effects of environmental variability on foraging success and condition are more pronounced in smaller individuals.
* 4
There was no relationship between MPPM and pup birth mass, indicating pre-partum investment did not differ between years. However, there was a positive relationship between MPPM and pup mass gain. Mass and energy transfer efficiency were 10·2 and 5·4% higher in 2002 than 2003, which suggests costs associated with a putatively poor-resource year were delayed until lactation.
* 5
Heavier females lost a higher proportion of mass during lactation in both years, so smaller females may not have been able to provide more to their offspring to wean a pup of similar size to larger females.
* 6
MPPM had only a small influence on total body lipid; therefore, regardless of mass, females had the same relative body composition. Females with male pups lost a higher percentage of lipid than those with female pups, but by the end of lactation female pups had 4·5% higher lipid content than males.
* 7
It appears that for Weddell seals the consequences of environmentally induced variation in food availability are manifested in differences in maternal mass and expenditure during lactation. These differences translate to changes in pup mass and condition at weaning with potential consequences for future survival and recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasiclassical trajectory calculations of collisional energy transfer from highly vibrationally excited propane + rare gas systems are reported. This work extends our hard-sphere model (A. Linhananta and K. F. Lim, Phys. Chem. Chem. Phys., 2000, 2, 1385) to examine the variation of the internal energy during collisions with a rare bath gas. This was accomplished by recording the vibrational and rotational energy of propane after each atom–atom encounter during trajectory simulations of propane + rare gas systems. This provides detailed information of the energy flow during a collision. It was found that collisions with small number of encounters transfer energy efficiently, whereas those with many encounters do not. Detailed analyses reveal that the former collisions arise from trajectories with high initial impact parameter, whereas the latter have small initial impact parameter. The reason behind this is the dependence of collision energy transfer (CET) of large polyatomic molecules on their shape. This is connected to the well-known role of rotational energy transfer (RET) as a gateway for CET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baleen whales are an important group of predators on Antarctic krill in the Southern Ocean. During the CCAMLR 2000 Survey to estimate the biomass and distribution of Antarctic krill, International Whaling Commission observers carried out a visual line transect survey to estimate the number of baleen whales occurring in the survey area. This paper reviews techniques used to estimate krill consumption by baleen whales and in combination with estimates of whale abundance estimates of krill consumption are generated for the South Atlantic sector of the Southern Ocean. This survey estimates that the present populations of whales feeding in this region are likely to consume approximately 1.6 million tonnes, but possibly up to as much as 2.7 million tonnes of krill within the summer season. Although this only represents 4–6% of the estimated krill biomass in the region (and probably less than this percentage of the total annual krill production), the depleted numbers of baleen whales resulting from past or current whaling activities should be taken into account when setting quotas for the commercial exploitation of krill if there is to be a recovery to pre-exploitation biomass levels of baleen whales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cuttlefish Sepia apama Gray (Mollusca: Cephalopoda) is a seasonally abundant food resource exploited annually by moulting albatrosses throughout winter and early spring in the coastal waters of New South Wales, Australia. To assess its nutritional value as albatross forage, we analysed S. apama for water, lipid protein, ash contents, energy density and amino acid composition. Because albatrosses consistently consume S. apama parts preferentially in the order of head, viscera and mantle, we analysed these sections separately, but did not identify any nutritional basis for this selective feeding behaviour. The gross energy value of S. apama bodies was 20.9 kJ/g dry mass, but their high water content (>83%; cf <70% for fish) results in a relatively low energy density of 3.53 kJ/g. This may contribute to a need to take large meals, which subsequently degrade flight performance. Protein content was typically >75% dry mass, whereas fat content was only about 1%. Albatrosses feed on many species of cephalopods and teleost fish, and we found the amino acid composition of S. apama to be comparable to a range of species within these taxa. We used S. apama exclusively in feeding trials to estimate the energy assimilation efficiency for Diomedea albatrosses. We estimated their nitrogen-corrected apparent energy assimilation efficiency for consuming this prey to be 81.82 ± 0.72% and nitrogen retention as 2.90 ± 0.11 g N kg-1 d-1. Although S. apama has a high water content and relatively low energy density, its protein composition is otherwise comparable to other albatross prey species. Consequently, the large size and seasonal abundance of this prey should ensure that albatrosses remain replete and adequately nourished on this forage while undergoing moult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various attempts have been made to minimise energy consumption of rail vehicles by means of regenerative power from electric braking of traction motors. This paper describes energy efficiency methods in electrified railways based on recovery of energy. Direct recovery methods that return regenerative power to electrified networks, and recovery methods based on energy storage systems are elaborated. The benefits of developing recovery methods and advantages of energy storage systems are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pre-weaning growth rates, body composition, milk consumption and mass gain efficiency were measured in Australian fur seal Arctocephalus pusillus doriferus pups born in two consecutive breeding periods. Australian fur seals have the highest birth mass of any fur seal species (male 8.3 kg; female 7.2 kg). While their absolute pre-weaning growth rate (male 62 g·day−1; female 53 g·day−1) is similar to that of other temperate latitude fur seals, they have the longest birth-mass doubling time of any otariid species (134–136 days). Daily milk consumption increased from 400 g·day−1 (5 MJ·day−1) after birth to 675 g·day−1 (13.7 MJ·day−1) at age 210 day. However, mean mass-specific milk consumption (41 g·kg−1) is substantially lower than in other otariid species (58–70 g·kg−1) and, combined with a low mass gain efficiency (0.12 g·g−1), contributes to the low mass-specific growth rates observed. There were no significant differences in either absolute or mass-specific milk consumption between the sexes. Significant differences, however, were found between the sexes in the body composition of pups with females generally having larger body lipid stores than males for any given mass. Peak milk yield by Australian fur seal females is estimated at 0.60 MJkg−0.75, substantially less than in Antarctic fur seals. The low level of maternal energy transfer in Australian fur seals may reflect the relatively low marine productivity of their foraging areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report for the first time an in situ photopolymerization of model co-monomers, 2-hydroxyethyl methacrylate (HEMA) and tetra (ethylene glycol) diacrylate (TEGDA), in an IL electrolyte containing I2 for DSSCs. TiO2 nanoparticles were used as the photo-initiator and co-gelator in a charge transfer polymerization reaction. The gel-IL polymer obtained was characterized in terms of the diffusion properties of the electrolyte. Preliminary results from DSSCs assembled using the gel-IL electrolyte showed energy conversion efficiency of 3.9% at 1 sun (AM1.5) and 5.0% at 0.39 sun illumination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel TiO2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO2 nanorods on TiO2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO2 nanorods had lower dye loading than TiO2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO2 nanorods received less resistance than that in TiO2 nanoparticle aggregation. By just applying a thin layer of TiO2 nanorods on TiO2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO2 nanoparticle layer covered with 3 μm thick TiO2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The most important prevention in minimizing energy transfer in commercial buildings is the treatment of glazing in the building facade. In a commercial building, while the impacts of roof, walls and floors on the overall heating and cooling loads of the building have low effects, glazing is likely to be the most important factor. This paper investigates the BCA Section-J glazing calculator and the ETTV (Envelope Thermal Transfer Value) methods and tries to look for differences as well as similarities in calculation of building envelopes energy performance. For this investigation, a hypothetical high-rise commercial building in Melbourne, Australia is considered when evaluating the energy performance of the envelope through these two methods. Both methods consider the U-Value of glass and wall materials as well as Solar Heat Gain Coefficient (SHGC) and Shading Coefficient (SC) of the glass. Findings in this research project indicate differences and significant discrepancies between the BCA Section-J and ETTV methods in evaluating the energy performance of commercial building façades. Issues of calculation weaknesses are identified with the lack of air leakage and infiltration of a particular façade design or window to wall ratio (WWR). Suggestions have been made where improvement to the overall energy calculation through facades of a commercial building is needed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a numerical study of the turbulent kinetic energy budget in the wake of cylinders undergoing Vortex-Induced Vibration (VIV). We show three-dimensional Large Eddy Simulations (LES) of an elastically mounted circular cylinder in the synchronization regime at Reynolds number of Re=8000. The Immersed Boundary Method (IBM) is used to account for the presence of the cylinder. The flow field in the wake is decomposed using the triple decomposition splitting the flow variables in mean, coherent and stochastic components. The energy transfer between these scales of motions are then studied and the results of the free oscillation are compared to those of a forced oscillation. The turbulent kinetic energy budget shows that the maximum amplitude of VIV is defined by the ability of the mean flow to feed energy to the coherent structures in the wake. At amplitudes above this maximum amplitude, the energy of the coherent structures needs to be fed additionally by small scale, stochastic energy in form of backscatter to sustain its motion. Furthermore, we demonstrate that the maximum amplitude of the VIV is defined by the integral length scale of the turbulence in the wake