8 resultados para elliptical monopole antennas

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a Geometrically Based Single Bounce Elliptical Model (GBSBEM) for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. The system model assumes a cluster based wireless sensor network (WSN) which collects information from the sensors, filters and modulates the data and transmit it through a wireless channel to be collected at the receiver. We first develop a GBSBE model and based on this model we develop our channel model. Use of Smart antenna system at the receiver end, which exploits various receive diversity combining techniques like Maximal Ratio Combining (MRC), Equal Gain Combining (EGC), and Selection Combining (SC), adds novelty to this system. The performance of these techniques have been proved through matlab simulations and further ahead based on different number of antenna elements present at the receiver array, we calculate the performance of our system in terms of bit-error-rate (BER). Based on the transmission power we quantify for the energy efficiency of our communication model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks have attracted a lot of attention recently. In this paper, we develop a channel model based on the elliptical model for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. We verify that in a sensor network, the use of receive diversity techniques improves the performance of the system. Extensive performance analysis of the system is carried out for both single and multiple antennas with the applied receive diversity techniques. Performance analyses based on variations in receiver height, maximum multipath delay and transmit power have been performed considering different numbers of antenna elements present in the receiver array, Our results show that increasing the number of antenna elements for a wireless sensor network does indeed improve the BER rates that can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter the authors discuss the physical insight of the role of wireless communication in RFID systems. In this respect, this chapter gives a brief introduction on the wireless communication model followed by various communication schemes. The chapter also discusses various channel impairments and the statistical modeling of fading channels based on the environment in which the RFID tag and reader may be present. The chapter deals with the fact that the signal attenuations can be dealt with up to some level by using multiple antennas at the reader transmitter and receiver to improve the performance. Thus, this chapter discusses the use of transmit diversity at the reader transmitter to transmit multiple copies of the signal. Following the above, the use of receiver combining techniques are discussed, which shows how the multiple copies of the signal arriving at the reader receiver from the tag are combined to reduce the effects of fading. The chapter then discusses various modulation techniques required to modulate the signal before transmitting over the channel. It then presents a few channel estimation algorithms, according to which, by estimating the channel state information of the channel paths through which transmission takes place, performance of the wireless system can be further increased. Finally, the Antenna selection techniques are presented, which further helps in improving the system performance.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the multicast lifetime capacity of energy-limited wireless ad hoc networks using directional multibeam antennas by formulating and solving the corresponding optimization problem. In such networks, each node is equipped with a practical smart antenna array that can be configured to support multiple beams with adjustable orientation and beamwidth. The special case of this optimization problem in networks with single beams have been extensively studied and shown to be NP-hard. In this paper, we provide a globally optimal solution to this problem by developing a general MILP formulation that can apply to various configurable antenna models, many of which are not supported by the existing formulations. In order to study the multicast lifetime capacity of large-scale networks, we also propose an efficient heuristic algorithm with guaranteed theoretical performance. In particular, we provide a sufficient condition to determine if its performance reaches optimum based on the analysis of its approximation ratio. These results are validated by experiments as well. The multicast lifetime capacity is then quantitatively studied by evaluating the proposed exact and heuristic algorithms using simulations. The experimental results also show that using two-beam antennas can exploit most lifetime capacity of the networks for multicast communications. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neighbor discovery is a crucial step in the initialization of wireless ad hoc networks. When directional antennas are used, this process becomes more challenging since two neighboring nodes must be in transmit and receive states, respectively, pointing their antennas to each other simultaneously. Most of the proposed neighbor discovery algorithms only consider the synchronous system and cannot work efficiently in the asynchronous environment. However, asynchronous neighbor discovery algorithms are more practical and offer many potential advantages. In this paper, we first analyze a one-way handshake-based asynchronous neighbor discovery algorithm by introducing a mathematical model named 'Problem of Coloring Balls.' Then, we extend it to a hybrid asynchronous algorithm that leads to a 24.4% decrease in the expected time of neighbor discovery. Compared with the synchronous algorithms, the asynchronous algorithms require approximately twice the time to complete the neighbor discovery process. Our proposed hybrid asynchronous algorithm performs better than both the two-way synchronous algorithm and the two-way asynchronous algorithm. We validate the practicality of our proposed asynchronous algorithms by OPNET simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) provide a low cost option for monitoring different environments such as farms, forests and water and electricity networks. However, the restricted energy resources of the network impede the collection of raw monitoring data from all the nodes to a single location for analysis. This has stimulated research into efficient anomaly detection techniques to extract information about unusual events such as malicious attacks or faulty sensors at each node. Many previous anomaly detection methods have relied on centralized processing of measurement data, which is highly communication intensive. In this paper, we present an efficient algorithm to detect anomalies in a decentralized manner. In particular, we propose a novel adaptive model for anomaly detection, as well as a robust method for modeling normal behavior. Our evaluation results on both real-life and simulated data sets demonstrate the accuracy of our approach compared to existing methods.