15 resultados para electron emission measurements

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population density can play a vital role in determining investment in reproductive behaviours and morphologies of invertebrates. Males reared in high-density environments, where competition is high but difficulties in locating mates are low, may invest more in reproductive structures associated with sperm competition such as testes, at the expense of those traits associated with mate location, such as antennae. In species where females advertise for mates, such as most moths, a high-density environment may also lead to a reduction in pheromonal signalling (calling) length and frequency as a result of high mate abundance. While such responses have been shown at the phenotypically plastic level in moths, heritable evolutionary adaptations have seldom been tested, and studies of how population density influences pheromone signalling strategies are scarce. Here we use behavioural assays and scanning electron microscopic measurements to test whether larval population density influences, at the genetic level, the ability of males to locate females and male investment into antennal morphology, in addition to its effect on the frequency and duration of female calling. We used two replicated populations of the Indian meal moth Plodia interpunctella that had experimentally evolved under high or low population densities for 35 generations. We found no significant divergence in antennal morphology or mate acquisition behaviours between the two density populations. These findings suggest that although population density has the ability to create plastic changes in both morphological and behavioural traits, this factor alone is unlikely to be causing evolutionary change in male and female signalling in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic emission (AE) study based on the acoustic signal ranges from 30MHz to 300MHz has been performed to diagnose the deterioration of insulation level in outdoor ceramic insulator. Different weather conditions combining with artificially created pollution were produced in laboratory and measurements were recorded over a fixed period of time. Pollution due to fine dust particles has been created according to IEC standard under wet and dry conditions. Samples that exhibit internal cracks and fracture were used in this study. The collected AE signals were sampled and analysed using fractal theory. The results of this study have clearly demonstrated the prospect of using AE technique to monitor the working condition of outdoor insulator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, electromagnetic emission at the frequency range of 30MHz to 300MHz is used to detect physical defects on the 22kV outdoor zinc-oxide (ZnO) surge arresters. Different weather conditions combining with artificially created pollution were produced in a laboratory environment and measurements were recorded over a fixed period of time. Pollution due to fine dust particles has been created according to IEC standard under both wet and dry conditions. The aim is to detect the defects (bushing damage) when the surge arrester is subjected to various weather and surface condition. The collected electromagnetic signals were sampled and analyzed using analysis tools such as the autocorrelation coefficient and Wigner-Ville distribution. The results from the present paper indicate that electromagnetic radiation from the defects on surge arrester combining with the adequate analysis tools can be used as a valuable diagnostic tool for power system operator.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wool fibres consist of micro to nano scale protein constituents that could be used for innovative applications. While techniques for extracting these constituents or making wool fibres into organic powders have been developed, effectively dispersing the particles and accurately determining their size has been difficult in practice. In this study, an ultrasonic method was employed to disperse cortical cells extracted from wool fibres into an
immersion oil or ethanol. Specimens of the cortical cells were then observed under optical microscopy and scanning electron microscopy, respectively. Cell length and maximum cell diameter were measured to quantify the cell size. The results suggest significant discrepancies exist in the cortical cell size obtained from the two different measurement techniques. The maximum diameter of wool cortical cells obtained from the optical microscope was much larger than that from the scanning electron microscope, while the length was much shorter. A correction factor is given so that cortical cell size obtained from the two measurement techniques can be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the electron field-emission (FE) characteristics of conical boron nitride nanorods grown on a (1 0 0) n-type silicon substrate. The emission current can be up to ~60 µA at an applied voltage of ~3 kV. Two distinct slopes are evident in the Fowler–Nordheim (FN) plot. The FE characteristics can be explained using a site-related tunnelling-controlled mechanism. The occurrence of two FN slopes is attributed to the switchover from tip emission to side emission, which results from the differences in interface barrier, geometry, as well as the total emission area of the two emission interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raman and photoluminescence (PL) spectra of nanocrystalline zinc oxide produced by mechanochemical synthesis were measured using a pulsed nitrogen laser (337.1 nm) and xenon lamp (360 nm) as excitation sources in PL measurements and a cw Nd:YAG laser in Raman measurements. PL was observed in the range 400–800 nm. The Raman spectrum of nanocrystalline (90 nm) ZnO was compared to that of coarsegrained ZnO. The Raman bands of nanocrystalline zinc oxide were found to be shifted to lower frequencies and broadened. Laser radiation was shown to cause local heating of zinc oxide up to 1000 K, resulting in photoinduced formation of zinc nanoclusters. Mixtures of zinc oxide and sodium chloride powders are heated to substantially lower temperatures. Under nitrogen laser excitation, the green PL band (535 nm), characteristic of bulk ZnO, is shifted to longer wavelengths by 85 nm. The results are interpreted in terms of light confinement in zinc oxide microclusters consisting of large number of nanocrystallites. The photoinduced processes in question may be a viable approach to producing metal-insulator structures in globular photonic crystals, opals, filled with zinc oxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and synthesis of two novel fluorescent PET anion sensors is described, based on the principle of ‘fluorophore-spacer-(anion)receptor’. The sensors 1 and 2 employ simple diaromatic thioureas as anion receptors, and the fluorophore is a naphthalimide moiety that absorbs in the visible part of the spectrum and emits in the green. Upon recognition of anions such as F and AcO in DMSO, the fluorescence emission of 1 and 2 was ‘switched off’, with no significant changes in the UV–vis spectra. This recognition shows a 1:1 binding between the receptor and the anions. In the case of F, further additions of the anion, gave rise to large changes in the UV–vis spectra, where the λmax at 455 nm was shifted to 550 nm. These changes are thought to be due to the deprotonation of the 4-amino moiety of the naphthalimide fluorophore. This was in fact found to be the case, using simple naphthalimide derivatives such as 6. Sensors 1 and 2 can thus display dual sensing action; where at low concentrations, the fluorescence emission is quenched, and at higher concentrations the absorption spectra are modulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

α-Al2O3 nanotubes were synthesized in bulk quantity by using simple physical evaporation of pure aluminum powders at 1000 °C. Field emission scanning electron microscopy and transmission electron microscopy observations show that the nanotubes have diameters smaller than 100 nm and lengths up to several microns. Cathodoluminescence measurements revealed a strong luminescence band in the wavelength range of 280–380 nm centered at 330 nm, which could be attributed to the oxygen vacancies in the α-Al2O3 nanotubes. Sacrificial template model is regarded as the possible formation mechanism of the nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolabeled diacetylbis(4-methylthiosemicarbazonato)copperII [CuII(atsm)] is an effective positron-emission tomography imaging agent for myocardial ischemia, hypoxic tumors, and brain disorders with regionalized oxidative stress, such as mitochondrial myopathy, encephalopathy, and lactic acidosis with stroke-like episodes (MELAS) and Parkinson’s disease. An excessively elevated reductive state is common to these conditions and has been proposed as an important mechanism affecting cellular retention of Cu from CuII(atsm). However, data from whole-cell models to demonstrate this mechanism have not yet been provided. The present study used a unique cell culture model, mitochondrial xenocybrids, to provide whole-cell mechanistic data on cellular retention of Cu from CuII(atsm). Genetic incompatibility between nuclear and mitochondrial encoded subunits of the mitochondrial electron transport chain (ETC) in xenocybrid cells compromises normal function of the ETC. As a consequence of this impairment to the ETC we show xenocybrid cells upregulate glycolytic ATP production and accumulate NADH. Compared to control cells the xenocybrid cells retained more Cu after being treated with CuII(atsm). By transfecting the cells with a metal-responsive element reporter construct the increase in Cu retention was shown to involve a CuII(atsm)-induced increase in intracellular bioavailable Cu specifically within the xenocybrid cells. Parallel experiments using cells grown under hypoxic conditions confirmed that a compromised ETC and elevated NADH levels contribute to increased cellular retention of Cu from CuII(atsm). Using these cell culture models our data demonstrate that compromised ETC function, due to the absence of O2 as the terminal electron acceptor or dysfunction of individual components of the ETC, is an important determinant in driving the intracellular dissociation of CuII(atsm) that increases cellular retention of the Cu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data is from an electron backscatter diffraction (EBSD) study of the microstructure of high carbon ‘Wootz’ steel. The objective of the study is to infer an unknown thermomechanical history from observation and analysis of the final microstructure in various ancient artefacts (swords and tools), and then compare the findings with heat treatments of the ancient artefacts and modern attempts at duplication of the structure. Electron backscatter data reveals the orientation relationships between various phases in the material, particularly cementite and ferrite. The dataset is randomly structured and organised. The data is automatically generated by an electron backscattered diffraction system attached to a field emission scanning electron microscope. The dataset uses proprietary software (cannot be copied or distributed without complying with licensing agreements): Oxford HKL Channel 5. As the native formats are binary they cannot be read with standard software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous carbon nanotube/polyvinylidene fluoride (CNT/PVDF) composite material can be fabricated via formation and freeze-drying of a gel. The field emission scanning electron microscopy, nitrogen adsorption-desorption and pore size distribution analysis reveal that the introduction of a small amount of carbon nanotubes (CNTs) can effectively increase the surface roughness and porosity of polyvinylidene fluoride (PVDF). Contact angle measurements of water and oil indicate that the as-obtained composite material is superhydrophobic and superoleophilic. Further experiments demonstrate that these composite material can be efficiently used to separate/absorb the insoluble oil from oil polluted water as membrane/absorbent. Most importantly, the electrical conductivity of such porous CNT/PVDF composite material can be tuned by adjusting the mass ratio of CNT to PVDF without obviously changing the superhydrophobicity or superoleophilicity. The unique properties of the porous CNT/PVDF composite material make it a promising candidate for oil-polluted water treatment as well as water-repellent catalyst-supporting electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the mixed annihilation electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) with various cyclometalated iridium(iii) chelates. Compared to mixed ECL systems comprising organic luminophores, the absence of T-route pathways enables effective predictions of the observed ECL based on simple estimations of the exergonicity of the reactions leading to excited state production. Moreover, the multiple, closely spaced reductions and oxidations of the metal chelates provide the ability to finely tune the energetics and therefore the observed emission colour. Distinct emissions from multiple luminophores in the same solution are observed in numerous systems. The relative intensity of these emissions and the overall emission colour are dependent on the particular oxidized and reduced species selected by the applied electrochemical potentials. Finally, these studies offer insights into the importance of electronic factors in the question of whether the reduced or oxidized partner becomes excited in annihilation ECL. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) have been studied as a field emission material due to their unique and excellent properties such as high oxidation resistance and negative electron affinity. However, field emission properties of BNNT field emitters were rarely reported until now because it is difficult to synthesize high purity BNNTs and fabricate stable BNNT field emitters. Here, we report high field emission properties from BNNT field emitters fabricated on a tungsten rod.