18 resultados para electron, bound-state QED, g-factor, field emission point arrays

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the electron field-emission (FE) characteristics of conical boron nitride nanorods grown on a (1 0 0) n-type silicon substrate. The emission current can be up to ~60 µA at an applied voltage of ~3 kV. Two distinct slopes are evident in the Fowler–Nordheim (FN) plot. The FE characteristics can be explained using a site-related tunnelling-controlled mechanism. The occurrence of two FN slopes is attributed to the switchover from tip emission to side emission, which results from the differences in interface barrier, geometry, as well as the total emission area of the two emission interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanotubes (BNNTs) have been studied as a field emission material due to their unique and excellent properties such as high oxidation resistance and negative electron affinity. However, field emission properties of BNNT field emitters were rarely reported until now because it is difficult to synthesize high purity BNNTs and fabricate stable BNNT field emitters. Here, we report high field emission properties from BNNT field emitters fabricated on a tungsten rod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ideal starting condition for selective growth experiments is one having a layer of randomly-oriented nuclei adjacent to a matrix with negligible orientational variation but sufficient stored energy to promote growth. In practice, cutting or deformation processes are used in an attempt to approximate these ideal conditions, but the degree to which this is achieved has not been rigorously quantified. In this work, Fe-3wt%Si single crystals were cut or deformed using six different processes. The variation in texture with distance from the cut or deformed surface was measured using electron backscatter diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM) in order to assess the ability of each process to create conditions suitable for selective growth experiments. While grooving with a machine tool produced the best spread of orientations at the cut surface, the suitability of this process is diminished by the presence of a differently-textured deformed layer between the cut surface and the single crystal matrix. Grinding produced a less ideal distribution of orientations at the cut surface, but the presence of these orientations in a very thin layer adjacent to the matrix makes this process preferable for preparing crystals for selective growth experiments, provided the results are corrected for the deviation in the distribution of nuclei orientations from a random distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overview of a series of investigations of the microstructure and texture of cold-rolled IF and LC steel. The investigations made extensive use of orientation mapping using electron backscattered diffraction (EBSD) in a field emission gun scanning electron microscope (FEG-SEM). The effect of grain boundaries on the deformed microstructure was examined by comparing the textures of regions near grain boundaries and in the interiors of grains.  A general weakening of the texture, but a strengthening of the {OOI}<110> component, occurs in the vicinity of grain boundaries. Misorientation angle and axis distributions were used to characterise the fragmentation of grains belonging to different orientation classes. The influence of carbon on the deformed microstructure and nucleation during recrystallization was clarified by examining the microstructures of LC and IF steels during rolling and annealing. The
results of the investigations emphasize the important role of shear banding in determining the fragmentation behaviour of ND-fibre grains and the orientations of viable recrystallization nuclei within the deformed microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 mgrm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data is from an electron backscatter diffraction (EBSD) study of the microstructure of high carbon ‘Wootz’ steel. The objective of the study is to infer an unknown thermomechanical history from observation and analysis of the final microstructure in various ancient artefacts (swords and tools), and then compare the findings with heat treatments of the ancient artefacts and modern attempts at duplication of the structure. Electron backscatter data reveals the orientation relationships between various phases in the material, particularly cementite and ferrite. The dataset is randomly structured and organised. The data is automatically generated by an electron backscattered diffraction system attached to a field emission scanning electron microscope. The dataset uses proprietary software (cannot be copied or distributed without complying with licensing agreements): Oxford HKL Channel 5. As the native formats are binary they cannot be read with standard software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon coated LiFe0·4Mn0·6PO4 (LiFe0·4Mn0·6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700°C) for 10 h to produce LiFe0·4Mn0·6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600°C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700°C. Electrochemical analysis results show that LiFe0·4Mn0·6PO4/C synthesised at 600°C exhibits the best performance with the initial discharge capacity of 128 mAh g-1 at 0·1 C, and 109 mAh g-1 at 1 C after 500 cycles. The LiFe0·4Mn0·6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of experiments involving the compression of an Aluminum cylinder with concurrent die rotation were carried out. Two important features were observed: one was that die rotation reduced the degree of bulging and the other was that the compression load decreased. An upper bound analysis with a velocity field consisting of a compound exponential cusp representation was utilized to obtain an approximate analytical solution in a closed form. The theoretical result reproduced the reduction in bulging severity with die rotation as well as the changes in compression pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel silicon-deficient mullite (Al5.65Si0.35O9.175) single crystal nanowires were synthesized in large quantities on mica substrates assisted by the intermediate fluoride species. The nanowires have diameters in the range 50–100 nm and typical lengths of several µm. Aligned nanowires were observed at the substrate edge. The nanowires have strong photoluminescence (PL) emission bands at 310, 397, 452 and 468 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α-Al2O3 nanotubes were synthesized in bulk quantity by using simple physical evaporation of pure aluminum powders at 1000 °C. Field emission scanning electron microscopy and transmission electron microscopy observations show that the nanotubes have diameters smaller than 100 nm and lengths up to several microns. Cathodoluminescence measurements revealed a strong luminescence band in the wavelength range of 280–380 nm centered at 330 nm, which could be attributed to the oxygen vacancies in the α-Al2O3 nanotubes. Sacrificial template model is regarded as the possible formation mechanism of the nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α-Al2O3 nanowires, with diameter around 10 nm, were synthesized in bulk quantity by heating the mixture of pure aluminum and graphite powders at 900 °C. Scarcity of oxygen is regarded as the reason for the growth of the small diameter α-Al2O3 nanowires at relatively low temperature. The product was characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence. The Oxygen vacancies in the nanowires lead to the strong photoluminescence in the wavelength range of 400–700 nm with its peak at 527 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An array of pine-shaped nanostructures of aluminum nitride (AlN) was synthesized through direct reaction between Al vapor and nitrogen gas in direct current (DC) arc discharge plasma without any catalyst or template. The as-prepared nanostructure consists of many pine-needle-shaped leaves with conical shape tips. The structure, morphology, and optical property of the nanostructure have been characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. A possible growth mechanism of the pine-shaped nanostructure was discussed. Two factors were found to be essential for branched nanostructure growth, i.e., the reaction time and N2 pressure. The photoluminescence spectrum of the nanostructure of AlN revealed an intense emission band, suggesting that there may be potential applications in electronic and optoelectronic nanodevices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

V2O5·nH2O nanosheets are fabricated hydrothermally with the acidified peroxovanadate solution at 200 °C for 12 h. The X-ray diffraction suggests that V2O5·nH2O nanosheets display lamellar ordering along c-axis direction. Transmission electron microscopy, field-emission scanning electron microscopy, and selected area electron diffraction indicate that V2O5·nH2O nanosheets are very thin in thickness and micron-sized in lateral dimension, and they are two-dimensional crystallites. X-ray photoelectron spectroscopy and thermogravimetric analysis are utilized to confirm the elemental composition of nanosheets. The formation process of nanosheets is also discussed in terms of time- and temperature-controlled experiments.