44 resultados para electromechanical actuators

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of ionic liquids (ILs) as electrolytes for electromechanical actuators based on polypyrroles (PPy's) is described. The composition of the electrolytes has a significant effect on the electrochemical properties of the PPy actuator and subsequently on actuator performance, improving cycle life and strain generated. The actuator performance in ionic liquid electrolytes is significantly better than that in traditional organic and aqueous electrolytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Novel polymer-in-ionic liquid electrolytes (PILEs) have been developed for solid state electrochemical actuators based on polypyrrole. The active polymer electrodes are readily oxidized/reduced without degradation in the PILE. It was found that the actuator cycle life is significantly enhanced in the PILE as is the ‘shelf life’ of the device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic polymer conductive network composite (IPCNC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Thus, these emerging materials have potential applications in biomimetic and biomedical devices. Whereas significant efforts have been directed toward the development of IPMC actuators, the establishment of a proper mathematical model that could effectively predict the actuators' dynamic behavior is still a key challenge. This paper presents development of an effective modeling strategy for dynamic analysis of IPCNC actuators undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a resistive-capacitive (RC) transmission line, whereas the mechanical model describes the actuator as a system of rigid links connected by spring-damping elements. The proposed modeling approach is validated by experimental data, and the results are discussed. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has explored methods for developing a large interactive dynamic 3D surface using an array of interconnected pneumatically actuated cylinders. People can control the surface using body movement, sound or pre-programmed sequences. The main contribution is a method for accurately positioning cylinders without the need for position feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By coating textiles with electrically conductive organic polymers, we are able to produce functional, intelligent fabrics. These fabrics can be utilised in applications such as gas sensors, actuators, electromagnetic shielding, radar absorption, selected frequency filtering in indoor wireless applications, and heating applications where vital parts of the body can be heated without embedding any wiring through the fabric.

Heat generation in fabrics coated with the conductive polymer polypyrrole was investigated. The fabrics were coated by chemical synthesis methods by oxidizing the pyrrole monomer in the presence of the fabric substrate. Ferric chloride was selected as the oxidizing agent and anthraquinone-2-sulfonic acid (AQSA) sodium salt monohydrate as the dopant.

Conductive fabrics were characterized by resistivity measurements, scanning electron microscopy, thermal imaging, current transmission over a period of time and calculations of power density per unit area. Effects of reaction conditions on the electrical properties and heat generated are presented. Polypyrrole coated fabrics were stable and possessed high electrical conductivity. Resistivity values ranged from 100-500 ohms/square depending on the reaction parameters. When subjected to a constant voltage of 24V, the polypyrrole coated polyester-Lycra® fabric doped with AQSA reached a maximum temperature of 42°C and a power density per unit area of 430 W/m2 was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new robotic grinding process has been developed for a low-powered robot system using a spring balancer as a suspension system. To manipulate a robot-arm in the vertical plane, a large actuator torque is required due to the tool weight and enormous gravity effect. But the actuators of the robot system always exhibit a limited torque capacity. This paper presents a cheap and available system for precise grinding tasks by a low-powered robot system using a suspension system. For grinding operations, to achieve position and force-tracking simultaneously, this paper presents an algorithm of the hybrid position/force-tracking scheme with respect to the dynamic behavior of a spring balancer. Material Removal Rate (MRR) is developed for materials SS400 and SUS304. Simulations and experiments have been carried out to demonstrate the feasibility of the proposed system.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Details 13 novel hormone compounds, designed and synthesised for the purpose of aiding the detection and treatment of breast and prostate cancers. Cellular and electromechanical studies of 3 of these synthesised hormones indicate a potential for human application.